ࡱ> CEBq` rbjbjqPqP -&:: a  >>>8v$ % "%%%%%%%$'h*8@%! @% a%  %%r#T J$ pD>l.$$w%0%<$S*0XS*J$S* J$LI6,@%@%%   d        INTRINSIC GEOMETRY OF CYCLIC HEPTAGONS AND OCTAGONS Dragutin SVRTAN Department of Mathematics, University of Zagreb, Bijeni ka c.30. 10000 Zagreb, Croatia Abstract Finding formulas for the area or circumradius of polygons inscribed in a circle in terms of side lengths is a classical subject . For the area of a triangle we have famous Heron formula and for cyclic quadrilaterals we have Brahmaguptas formula. A decade ago D.P.Robbins found a minimal equations satisfied by the area of cyclic pentagons and hexagons by a method of undetermined coefficients and he wrote the result in a nice compact form. The method he used could hardly be used for heptagons due to computational complexity of the approach. In another approach with two collaborators (see Ref.2) a concise heptagon/octagon area formula was obtained recently (not long after D.P.Robbins premature death). This approach uses covariants of binary quintics. It is not clear if this approach could be effectively used for cyclic polygons with nine or more sides. A nice survey on this and other Robbins conjectures is written by I.Pak (see Ref.4). In this talk we shall present an intrinsic proof of the Robbins formula for the area (circumradius and area times circumradius) of cyclic hexagon based on an intricate direct elimination of diagonals (the case of pentagon was treated in Ref.5) and using a new algorithm from Ref.6. In the early stage we used computations with MAPLE (which sometimes lasted several days, nowdays several hours!). Based on our new intermediate Brahmagupta formula we get simpler systems of equations for the area and area times circumradius of cyclic heptagons and cyclic octagons.Also computations of all diagonals will be discussed (cf..Ref 10) .It seems remarkable that our approach ,with a help of Groebner basis technics leads to minimal equations ,what is not the case with iterated resultants approach. References A.F. Moebius, Ueber die Gleichungen, mittelst welcher aus der Seiten eines in einen Kreis zu beschriebenden Vielecks der Halbmesser des Kreises un die Flahe des Vielecks gefunden werden, Crelle's Journal, 3:5--34. 1828. F.Miller Maley, David P.Robbins, Julie Roskies, On the areas of cyclic and semicyclic polygons, Adv. Applied Math. Vol34(2005),669-689. math.MG/0407300v1. D.P.Robbins, Areas of polygons inscribed in a circle, Discrete Computational Geometry, 12:223--236, 1994. I. Pak, The area of cyclic polygons: recent progress on Robbins conjectures, Adv. Applied Math. Vol34(2005),690-696. D. Svrtan, D.Veljan and V.Volenec, Geometry of pentagons: from Gauss to Robbins, math.MG/0403503. D.Svrtan, A new approach to rationalization of surds, submitted. D.Svrtan, Intrinsic proof of Robbins formula for the area of cyclic hexagons,. submitted. D.Svrtan, Equations for the Circumradius and Area of cyclic polygons via Wiener-Hopf factorization. Computational aspects and some new formulas. In preparation. 10.V.V.Varfolomeev, Inscribed polygons and Heron polynomials, Sb. Math. 194 (2003),311- 331.      Abstract: MATH/CHEM/COMP 2009, Dubrovnik, June 08-13, 2009 PAGE  PAGE 1 hj8 J L V C  e g j k 6MOQXȽЭЭ{q{{ibb hOwhOwhOwhOw6hOwhOw56hOwh&56$h&5CJOJQJ\aJmHsHh hOwh&5mHsHh&h&mHsHhOwmH sH hN_h ^J_Hh&^J_Hh&mH sH h&5\mH sH "hN_h 5\^J_HmH sH h&6OJQJ]&h8 L e {{c{{$ & F$If^`a$gdOw$ & F$If^`a$gd&$If^gdOw$$If^a$gdOw$$If^a$gdOw dh$IfgdN_ & F$If^`gd&$$Ifa$gdN_ $$Ifa$gd& q%LFcwhYhN_hk^J_HmH sH hN_h># ^J_HmH sH !hN_h9B*PJ^J_Hph# !hN_h /lB*PJ^J_Hph# !hN_h># B*PJ^J_Hph# hOw5\hOwhOw56]hOwhOwB*PJ^J_Hph# hOwh&56mHsH hOwh&hOwh&6hOwh&56h& hOwhOw Y $$Ifa$gdN_$r$If^ra$gdOw$ & F$If^`a$gd&     $a$gd># Ckd$$Ifl4$z$ t644 laf4 $$Ifa$gdN_89KMNPUVWXY_`acdjklmnpqrƵh?h 0J#mHnHu hOw0J#jhOw0J#UhOw5CJaJh~hOw5CJaJhOwjhOwUh /lhN_h># mH sH "WXabcnopqr$a$gd>#  &`#$gdo$ +;0/ =!"#k$n%n L$$If!vh5z$#vz$:V l4 t65z$f4$J@J Normal*$1$CJPJ_HaJmH sH tHL@1L  Heading 2 @& & F56CJ\]aJDA@D Default Paragraph FontVi@V  Table Normal :V 44 la (k@(No List :O: Numbering Symbols6U@6 Hyperlink >*B* ph6B@6 Body Text xzM@"z #Body Text First Indent, prva uvlaka]^`NON Heading x$CJOJPJQJ^JaJ(/@B( List^J6@R6 Header $ ]$<Ob< Table Contents $FOarF Table Heading $ $a$5\H"@H Caption xx $6CJ]^JaJ4O4 Illustration8O8 Frame contents.O. Index $^J^O^ Preformatted Text CJOJPJQJ^JaJfOf Horizontal Line%$d%d&d'd $CJ aJ 4 @4 Footer  !e@ HTML Preformatted= 2( Px 4 #\'*.25@9*$1$ CJOJQJ^JaJmHsHtHpp ># Table Grid7:V 0 *$1$&O& ~address*W@!* ~Strong5\.)@1. kI Page Numberr & zr 4Ee{  Y            c n s #$#C#C# #C #C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C#C z#C#c%yC#C4Ee{  Y                W c n o s  0h0x 00x000 0 0 0 0 0 0 0 0 00x0x0x0x0x0x0x0x0x0x0x0x0x0x0x0x0x0x0x0x0x0x0x0x0x0x0x 0| 0I00I00I00I00t0I0000I004Ee{  Y   s  00 00000 0 0 0 0 0 0 0 0 0K00Ԡe f f f g g g K0 HS```cr r q HOSZ\c!!l,2$1}R5 @0(  H c $r q<s| g; ; s D D s B*urn:schemas-microsoft-com:office:smarttagscountry-region8*urn:schemas-microsoft-com:office:smarttagsCity9*urn:schemas-microsoft-com:office:smarttagsplace X @5=v<CQV"kw!(0LQ ',19IQRXZb{ #    Y a   D H  s #,%1ud  "   s :::::::::::::5E X  s LQ s .7.R.n..... ..7.R.n..... ..7.R.n..... .'& ~&># 6 o$,*0*' ++G60A)BkINk /lMp-5t1wlLd RRBu/5g5kN_*Ow LD9?  s @ QQ4wQQ@{r pp@UnknownGz Times New Roman5Symbol3& z Arial5& zaTahomaMHCenturySchoolbookI Arial Unicode MSG5  hMS Mincho-3 fg?5 z Courier NewBAh,F,FD D 9$24d  3qHX)?L2pokric     Oh+'0  0 < H T`hpxpokricmcc2009_Svrtan 2Microsoft Office Word@Ik@@1@1D ՜.+,0 hp|  IRB   Title  !"#$%&'()*+,-./013456789;<=>?@ADRoot Entry F@"WFData 1Tableo*WordDocument-&SummaryInformation(2DocumentSummaryInformation8:CompObjq  FMicrosoft Office Word Document MSWordDocWord.Document.89q