ࡱ> VXSTUd5@Kbjbj22 XXM%4 h å".000000$RvT)T}))) 6).)))v |H k'F"0åTBw'`wwD) TT Y) Constant current chronopotentiometric stripping analysis of  N-catalyst in sodium chloride solution and seawater Slaana Strme ki*, Marta Plavai, Bo~ena osovi Ruer Boakovi Institute, Division for Marine and Environmental Research, Bijeni ka 54, P.O.Box 180, 10 002 Zagreb, Croatia * Corresponding author, e-mail:  HYPERLINK "mailto:strmecki@irb.hr" strmecki@irb.hr Other authors:  HYPERLINK "mailto:plavsic@irb.hr" plavsic@irb.hr ,  HYPERLINK "mailto:cosovic@irb.hr" cosovic@irb.hr Abstract Catalytic properties and surface activity of nitrogen containing polymeric organic material (N-POM) were analyzed by constant current chronopotentiometric stripping analysis (CPSA) and alternating current (AC) voltammetry in sodium chloride solution (pH 8) and seawater. CPSA proved to be a suitable method for determination of low concentrations of N-POM in seawater by measuring its presodium catalytic peak H. A protein human serum albumin (HSA) (15 % of N) was used as a model compound and the concentration of N-POM from natural seawater samples was expressed in HSA concentration equivalents. Peak H represents an additional parameter for characterization of natural organic matter. Keywords: N-containing polymeric organic material, peak H, chronopotentiometric stripping analysis, seawater samples Introduction Chronopotentiometric stripping analysis (CPSA) is an electrochemical technique introduced by Jagner and Graneli  ADDIN EN.CITE Jagner19761117Jagner, D.Graneli, A.Univ Goteborg,Dept Anal Chem,S-40220 Goteborg 5,SwedenPotentiometric Stripping AnalysisAnal. Chim. Acta83197619-260003-2670ISI:A1976BR62500003<Go to ISI>://A1976BR62500003EnglishJagner19761117Jagner, D.Graneli, A.Univ Goteborg,Dept Anal Chem,S-40220 Goteborg 5,SwedenPotentiometric Stripping AnalysisAnal. Chim. Acta83197619-260003-2670ISI:A1976BR62500003<Go to ISI>://A1976BR62500003English[1] for speciation of metal ions which form amalgam with mercury electrode (Zn(II), Cd(II), Pb(II), Cu(II)). Preconcentrating reduction step proceeds at negative potentials where amalgam is formed, followed by stripping step which could be performed in two different ways. Chemical oxidant (e.g. Hg(II) ions) previously added to the solution reoxidizes metals and potential in time is measured (E = f(t)). This is an example of chemical stripping. Another type of stripping mechanism is constant current stripping  ADDIN EN.CITE Zie1992424217Zie, Y. Q.Huber, C. O.Univ Wisconsin,Dept Chem,Milwaukee,Wi 53201Constant-Current Enhanced Potentiometric Stripping AnalysisAnalytica Chimica ActaAnalytica Chimica ActaAnal. Chim. Acta632631-2potentiometrycadmiumconstant-current enhanced potentiometric stripping analysis199263-700003-2670ISI:A1992JA43900007<Go to ISI>://A1992JA43900007English[2] in which constant current is applied to strip the accumulated material. CPSA is faster and more sensitive in comparison with voltammetric methods  ADDIN EN.CITE Kizek2001181817Kizek, R.Trnkova, L.Palecek, E.Palecek, E Acad Sci Czech Republ, Inst Biophys, Kralovopolska 135, CZ-61265 Brno, Czech Republic Acad Sci Czech Republ, Inst Biophys, CZ-61265 Brno, Czech Republic Masaryk Univ, Fac Sci, Dept Theoret & Phys Chem, CZ-61137 Brno, Czech RepublicDetermination of metallothionein at the femtomole level by constant current stripping chronopotentiometryAnalytical ChemistryAnalytical Chemistry48017320differential-pulse polarographycarbon electrodesrat-liverelectrochemical-behaviormercury-electrodesanimal-tissuesmetal-ionsvoltammetryproteinscadmium20014801-48070003-2700ISI:000171696800007<Go to ISI>://000171696800007English[3]. Therefore, it is successfully applied for the determination of low metal ion concentrations  ADDIN EN.CITE Riso1997252517Riso, R. D.LeCorre, P.Chaumery, C. J.Riso, RD Roscoff Univ Bretagne Occidentale,Upr Cnrs 9042,Lab Oceanog Chim,6 Rue Le Gorgeu,Bp 809,F-29285 Brest,France Marine Natl,Chim Analyt Lab,F-29240 Brest,FranceRapid and simultaneous analysis of trace metals (Cu, Pb and Cd) in seawater by potentiometric stripping analysisAnalytica Chimica ActaAnalytica Chimica ActaAnal. Chim. Acta833511-3potentiometrycopperleadcadmiummercury film electrodeoceanicheavy-metalsleadcadmiumcopperwaterseavoltammetryelectrode199783-890003-2670ISI:A1997YF68800008<Go to ISI>://A1997YF68800008EnglishTown2001434317Town, R. M.van Leeuwen, H. P.Town, RM Queens Univ Belfast, Sch Chem, David Keir Bldg, Belfast BT9 5AG, Antrim, North Ireland Queens Univ Belfast, Sch Chem, Belfast BT9 5AG, Antrim, North Ireland Univ Wageningen & Res Ctr, Lab Phys Chem & Colloid Sci, NL-6703 HB Wageningen, NetherlandsFundamental features of metal ion determination by stripping chronopotentiometryJournal of Electroanalytical ChemistryJournal of Electroanalytical Chemistry585091stripping chronopotentiometrystripping voltammetrytrace metalamalgam electrodesnatural-watersheavy-metalshumic matterrapid methodwhole-bloodleadcoppercadmiummercury200158-650022-0728ISI:000170406300009<Go to ISI>://000170406300009English[4,5], metalloid ions like selenium ions  ADDIN EN.CITE Gozzo19997717Gozzo, M. L.Colacicco, L.Calla, C.Barbaresi, G.Parroni, R.Giardina, B.Lippa, S.Gozzo, ML Univ Cattolica Sacro Cuore, Fac Med & Chirurg A Gemelli, Lab Chim Clin, Ist Chim & Chim Clin, Largo Francesco Vito 1, I-00168 Rome, Italy Univ Cattolica Sacro Cuore, Fac Med & Chirurg A Gemelli, Lab Chim Clin, Ist Chim & Chim Clin, I-00168 Rome, ItalyDetermination of copper, zinc, and selenium in human plasma and urine samples by potentiometric stripping analysis and constant current stripping analysisClinica Chimica ActaClinica Chimica Acta532851-2copperzincseleniumpotentiometric stripping analysisconstant current stripping analysiswhole-bloodcadmiumleadserum199953-680009-8981ISI:000082133600006<Go to ISI>://000082133600006English[6] and organic molecules in different media, as well as in speciation analysis of metal complexes  ADDIN EN.CITE Soares1998272717Soares, H. M. V. M.Almeida, A. A. N.Castro, M. P. O.Pinho, S. C.Vasconcelos, M. T. S. D.Soares, HMVM Univ Porto, Fac Engn, Dept Engn Quim, CTQAA, Rua Bragas, P-4099 Oporto, Portugal Univ Porto, Fac Engn, Dept Engn Quim, CTQAA, P-4099 Oporto, Portugal Univ Porto, Fac Ciencias, Dept Quim, LAQUIPAI, P-4099 Oporto, PortugalApplicability of potentiometric stripping analysis to the speciation of lead humic acid complexes using potassium permanganate as oxidantAnalystAnalystAnalystAnalyst13771236potentiometric stripping analysisanodic stripping voltammetryion-selective electrodespyridine-2,6-dicarboxylic acidhumic acidslead(ii) complexesanion-induced adsorptionsquare-wave voltammetrynatural-watersmercury-electrodestability-constantscopper-complexestrace-elementsheavy-metalssystemmicroelectrodes19981377-13820003-2654ISI:000074256300038<Go to ISI>://000074256300038EnglishTown1998323217Town, R. M.Town, RM Queens Univ Belfast, Sch Chem, Belfast BT9 5AG, Antrim, North Ireland Queens Univ Belfast, Sch Chem, Belfast BT9 5AG, Antrim, North IrelandChronopotentiometric stripping analysis as a probe for copper(II) and lead(II) complexation by fulvic acid: Limitations and potentialitiesAnalytica Chimica ActaAnalytica Chimica ActaAnal. Chim. Acta313631square-wave voltammetryamalgam electrodesmercury-electrodeaquatic mediatriton x-100metal-ionspotentiometryspeciationcalibrationsubstances199831-430003-2670ISI:000073586600004<Go to ISI>://000073586600004English[7,8]. Organic compounds like peptides  ADDIN EN.CITE Cai19963317Cai, X. H.Rivas, G.Farias, P. A. M.Shiraishi, H.Wang, J.Palecek, E.New Mexico State Univ,Dept Chem & Biochem,Las Cruces,Nm 88003 Acad Sci Czech Republ,Inst Biophys,Brno 61265,Czech Republic Univ Nacl Cordoba,Dept Quim Fis,Ra-5000 Cordoba,Argentina Pontificia Univ Catolica Rio De Janeiro,Dept Chem,Rio Janeiro,Brazil Ritsumeikan Univ,Dept Chem,Kusatsu,JapanPotentiometric stripping analysis of bioactive peptides at carbon electrodes down to subnanomolar concentrationsAnalytica Chimica ActaAnalytica Chimica ActaAnal. Chim. Acta493321potentiometryadsorptive stripping voltammetrybioactive peptideschronopotentiometrypeptide-modified carbon paste electrodescyclic voltammetrynucleic-acidsproteinsquantitiesDNA199649-570003-2670ISI:A1996VN99000006<Go to ISI>://A1996VN99000006English[9], proteins  ADDIN EN.CITE Kizek2001181817Kizek, R.Trnkova, L.Palecek, E.Palecek, E Acad Sci Czech Republ, Inst Biophys, Kralovopolska 135, CZ-61265 Brno, Czech Republic Acad Sci Czech Republ, Inst Biophys, CZ-61265 Brno, Czech Republic Masaryk Univ, Fac Sci, Dept Theoret & Phys Chem, CZ-61137 Brno, Czech RepublicDetermination of metallothionein at the femtomole level by constant current stripping chronopotentiometryAnalytical ChemistryAnalytical Chemistry48017320differential-pulse polarographycarbon electrodesrat-liverelectrochemical-behaviormercury-electrodesanimal-tissuesmetal-ionsvoltammetryproteinscadmium20014801-48070003-2700ISI:000171696800007<Go to ISI>://000171696800007EnglishHoneychurch1996121217Honeychurch, M. J.Ridd, M. J.James Cook Univ N Queensland,Dept Molec Sci,Townsville,Qld 4811,AustraliaThe potentiometric stripping analysis of proteinsElectroanalysisElectroanalysisElectroanalysisElectroanalysis65487proteinspotentiometric stripping analysisdisulfidechronopotentiometrysymmetrical spherical electrodeadsorption voltammetrytraceaccumulationreductionelements1996654-6601040-0397ISI:A1996VA26900009<Go to ISI>://A1996VA26900009EnglishHoneychurch1996121217Honeychurch, M. J.Ridd, M. J.James Cook Univ N Queensland,Dept Molec Sci,Townsville,Qld 4811,AustraliaThe potentiometric stripping analysis of proteinsElectroanalysisElectroanalysisElectroanalysisElectroanalysis65487proteinspotentiometric stripping analysisdisulfidechronopotentiometrysymmetrical spherical electrodeadsorption voltammetrytraceaccumulationreductionelements1996654-6601040-0397ISI:A1996VA26900009<Go to ISI>://A1996VA26900009English[3,10] and biological macromolecules like nucleic acids  ADDIN EN.CITE Wang1997373717Wang, J.Grant, D. H.Ozsoz, M.Cai, X. H.Tian, B. M.Fernandes, J. R.Wang, J New Mexico State Univ,Dept Chem & Biochem,Las Cruces,Nm 88003 Mt Allison Univ,Dept Chem,Sackville,Nb E0a 3c0,Canada Ege Univ,Fac Pharm,Tr-35100 Izmir,Turkey Univ Estadual Paulista,Dept Quim,Bauru,Sp,BrazilAdsorptive potentiometric stripping analysis of nucleic acids at mercury electrodesAnalytica Chimica ActaAnalytica Chimica ActaAnal. Chim. Acta773491-3DNArnamercury electrodepotentiometric stripping analysisadsorptive stripping voltammetrycarbon-paste electrodesDNArna199777-830003-2670ISI:A1997XW48400010<Go to ISI>://A1997XW48400010English[11] prepared in suitable buffer solutions also show specific CPS peaks on different electrodes. Cai et al.  ADDIN EN.CITE Cai19963317Cai, X. H.Rivas, G.Farias, P. A. M.Shiraishi, H.Wang, J.Palecek, E.New Mexico State Univ,Dept Chem & Biochem,Las Cruces,Nm 88003 Acad Sci Czech Republ,Inst Biophys,Brno 61265,Czech Republic Univ Nacl Cordoba,Dept Quim Fis,Ra-5000 Cordoba,Argentina Pontificia Univ Catolica Rio De Janeiro,Dept Chem,Rio Janeiro,Brazil Ritsumeikan Univ,Dept Chem,Kusatsu,JapanPotentiometric stripping analysis of bioactive peptides at carbon electrodes down to subnanomolar concentrationsAnalytica Chimica ActaAnalytica Chimica ActaAnal. Chim. Acta493321potentiometryadsorptive stripping voltammetrybioactive peptideschronopotentiometrypeptide-modified carbon paste electrodescyclic voltammetrynucleic-acidsproteinsquantitiesDNA199649-570003-2670ISI:A1996VN99000006<Go to ISI>://A1996VN99000006English[9] reported about CPS determination of bioactive peptides concentration based on oxidation peaks of tryptophan (Trp) and tyrosine (Tyr) on carbon paste electrode. Tyr gives oxidation peak named Y at Ep = 0.55 V and Trp oxidation peak W at Ep = 0.70 V vs. Ag/AgCl (3 M KCl). Bioactive peptides often contain Tyr residues so CPSA represents the most sensitive physico-chemical method for their determination. The stripping time increases linearly with concentration in lower concentration range, therefore subnanomolar concentrations of bombesin, neurotensin and luteinizing hormone-releasing hormone (LH-RH) could be determined. Peptide [Lys8]-vasopressin contains one disulphide bond which is reduced forming two thiol groups and one well define CPS reduction peak S at Ep = -0.56 V on mercury electrode appears  ADDIN EN.CITE Tomschik1998292917Tomschik, M.Havran, L.Fojta, M.Palecek, E.Tomschik, M Acad Sci Czech Republ, Inst Biophys, CZ-61265 Brno, Czech Republic Acad Sci Czech Republ, Inst Biophys, CZ-61265 Brno, Czech Republic Masaryk Univ, Fac Sci, Dept Phys Elect, CZ-61265 Brno, Czech RepublicConstant current chronopotentiometric stripping analysis of bioactive peptides at mercury and carbon electrodesElectroanalysisElectroanalysisElectroanalysisElectroanalysis403106constant current chronopotentiometrymercury and carbon electrodesbioactive peptidesreduction and oxidation of amino acid residuescatalytic hydrogen reductionvasopressinangiotensin iiacid-modified electrodestrace measurementspaste electrodesmetallothioneinvoltammetryproteinsinsulinrna1998403-4091040-0397ISI:000074468400010<Go to ISI>://000074468400010English[12]. In the same paper CPSA of peak which appears not due to the faradaic but due to the catalytic reduction was reported. That peak appears more positively on potential scale than usual hydrogen wave, preceding the reduction of sodium ions. It is named peak H or catalytic hydrogen or presodium wave and a key organic molecule is called a presodium catalyst  ADDIN EN.CITE Heyrovsky20068817Heyrovsky, M.Heyrovsky, M Acad Sci Czech Republ, J Heyrovski Inst Phys Chem, Prague 18223 8, Czech Republic Acad Sci Czech Republ, J Heyrovski Inst Phys Chem, Prague 18223 8, Czech RepublicResearch topic - Catalysis of hydrogen evolution on mercury electrodesCroatica Chemica ActaCroatica Chemica Acta1791hydrogen overpotentialmercurycatalysisvoltammetrychronopotentiometrybovine-serum-albumincurrentsvoltammetrybuffersproteincobaltionsph20061-40011-1643ISI:000237647600003<urls><related-urls><url>&lt;Go to ISI&gt;://000237647600003</url></related-urls></urls><language>English</language></record></Cite></EndNote>[13]. Except this kind of catalyst structure, there are two more: Brdi ka catalysts and metal ions. Brdi ka catalyst is a complex of Co(II) or Ni(II) ion and S-containing organic ligand molecule  ADDIN EN.CITE Mairanovskii196845456Catalytic and Kinetic Waves in PolarographyMairanovskii196845456Catalytic and Kinetic Waves in PolarographyRaspor2001232317Raspor, B.Raspor, B Rudjer Boskovic Inst, Ctr Marine & Environm Res, POB 180, HR-10002 Zagreb, Croatia Rudjer Boskovic Inst, Ctr Marine & Environm Res, HR-10002 Zagreb, CroatiaElucidation of the mechanism of the Brdicka reactionJournal of Electroanalytical Chemistry1595031-2brdicka reactioncatalytic hydrogen evolutionreaction mechanismmetallothionein determinationmytilus-galloprovincialismetallothioneinsmetals2001159-1620022-0728ISI:000168665900017<Go to ISI>://000168665900017English[14,15]. Platinum group of metals are identified as a metal deposition catalyst  ADDIN EN.CITE Bard197646466Encyclopedia of Electrochemistry of the ElementsMarcel Dekker[16]. In CPS catalytic reactions peak position on potential scale (Ep) and its height (dE / dt)-1 depend primarily on the molecular structure i.e. atoms or a group of atoms, their position in the molecule and surface activity. Nitrogen, sulphur, phosphorus and oxygen are the key atoms in molecules for producing catalytic peak, but only if they are suitably located in the catalyst structure. For example, nitrogen in peptide bond is not catalytically active  ADDIN EN.CITE Heyrovsky200544445[17]. Molecules with free electrons which attract hydrogen ions and can be easily adsorbed on the electrode surface, lower hydrogen overpotential and so hydrogen ions need less energy for reduction than without them. Many papers deal with CPSA of commercially available isolated and/or synthesized organic molecules that are mostly of biological origin. In present paper CPSA of organic matter present in seawater samples was investigated without any pre-treatment. Namely, carbohydrates, proteins and lipids are the main groups of organic compounds found in seawater. They represent 20 % of organic matter (OM) present in natural waters and are compounds of small molecular mass characterized on molecular level in plankton and sediments  ADDIN EN.CITE Hedges20001117Hedges, J. I.Eglinton, G.Hatcher, P. G.Kirchman, D. L.Arnosti, C.Derenne, S.Evershed, R. P.Kogel-Knabner, I.de Leeuw, J. W.Littke, R.Michaelis, W.Rullkotter, J.Hedges, JI Univ Washington, Sch Oceanog, Box 357940, Seattle, WA 98195 USA Univ Washington, Sch Oceanog, Seattle, WA 98195 USA Univ Bristol, Biogeochem Ctr, Bristol BS8 1RJ, Avon, England Ohio State Univ, Dept Chem, Newman & Wolfrom Lab, Columbus, OH 43210 USA Univ Delaware, Coll Marine Studies, Lewes, DE 19958 USA Univ N Carolina, Chapel Hill, NC 27599 USA ENSPC, Lab Chim Bioorgan & Organ Phys, CNRS, UMR 7573, F-75231 Paris 05, France Univ Bristol, Sch Chem, Organ Geochem Unit, Bristol BS8 1TS, Avon, England Tech Univ Munich, Lehrstuhl Bodenkunde, D-85350 Freising, Germany Netherlands Inst Sea Res, NL-1790 AB Den Burg, Texel, Netherlands Rhein Westfal TH Aachen, Lehrstuhl Geol & Geochem Erdols & Kohle, D-52056 Aachen, Germany Univ Hamburg, Inst Biogeochem & Meereschem, D-20146 Hamburg, Germany Univ Oldenburg, ICBM, D-26111 Oldenburg, GermanyThe molecularly-uncharacterized component of nonliving organic matter in natural environmentsOrganic GeochemistryOrganic Geochemistry9453110biogeochemistrybiodegradationblack carbondomencapsulationhumificationnmrpyrolysisselective preservationpolysaccharide hydrolysis ratesalga botryococcus-brauniideep-sea sedimentschemical-compositionblack carbonselective preservationmass-spectrometrykerogen formationmarine-sedimentsnmr-spectroscopy2000945-9580146-6380ISI:000165061400001<Go to ISI>://000165061400001English[18]. Phytoplankton is the highest producer of OM in seawater's photic zone. In the dissolved fraction of OM produced by phytoplankton, carbohydrates are the most abundant group  ADDIN EN.CITE Pakulski19942217Pakulski, J. D.Benner, R.Pakulski, Jd Univ Texas,Inst Marine Sci,Port Aransas,Tx 78373Abundance and Distribution of Carbohydrates in the OceanLimnology and OceanographyLimnology and Oceanography930394heterotrophic utilizationphaeocystis-pouchetidissolved freesargasso seaspring bloomamino-acidsseawaterpacificwaterssubstances1994930-9400024-3590ISI:A1994PC98200014<Go to ISI>://A1994PC98200014EnglishBorsheim19997717Borsheim, K. Y.Myklestad, S. M.Sneli, J. A.Borsheim, KY Norwegian Univ Sci & Technol, Dept Biotechnol, N-7034 Trondheim, Norway Norwegian Univ Sci & Technol, Dept Biotechnol, N-7034 Trondheim, Norway Biol Stn, N-7018 Trondheim, NorwayMonthly profiles of DOC, mono- and polysaccharides at two locations in the Trondheimsfjord (Norway) during two yearsMarine ChemistryMarine Chemistry255633-4dissolved organic carbon (doc)polysaccharidemonosaccharidecarbon cycledissolved organic-carbonseaseawateraccumulationpopulationsdynamicswaters1999255-2720304-4203ISI:000081358000005<Go to ISI>://000081358000005English[19,20]. Significant part of seawater's polymeric material consists of polysaccharides (PS)  ADDIN EN.CITE Deangelis19939917Barbarulo, M. V.Bruno, M.Volterra, L.Nicoletti, R.Deangelis, F Univ Laquila,Dept Chem,Via Assergi 6,I-67100 Laquila,Italy Univ Roma La Sapienza,Dept Chem,I-00185 Rome,Italy Ist Super Sanita,Environm Hyg Lab,I-00161 Rome,ItalyChemical-Composition and Biological Origin of Dirty Sea MucilagesPhytochemistryPhytochemistryPhytochemistryPhytochemistry393342amphora-coffeaeformiscylindrotheca-fusiformispennatae diatomalgaediatomsmucilagesextracellular carbohydratespolysaccharidesmonosaccharides analysis1993393-3950031-9422ISI:A1993LY98400013<Go to ISI>://A1993LY98400013EnglishFajon1999101017Fajon, C.Cauwet, G.Lebaron, P.Terzic, S.Ahel, M.Malej, A.Mozetic, P.Turk, V.Cauwet, G Univ Paris 06, CNRS, Observ Oceanol Banyuls, UMR 7621, F-66651 Banyuls sur Mer, France Univ Paris 06, CNRS, Observ Oceanol Banyuls, UMR 7621, F-66651 Banyuls sur Mer, France Ctr Marine & Environm Res, Rudjer Boskovic Inst, Zagreb 10000, Croatia Natl Inst Biol, Marine Stn Piran, Piran 66330, SloveniaThe accumulation and release of polysaccharides by planktonic cells and the subsequent bacterial response during a controlled experimentMicrobiology Microbiology MicrobiologyMicrobiologyMicrobiologyMicrobiology351294dissolved organic matterpolysaccharidemicrocosmnutrientbacterial activityexcretiondissolved organic-carbonphytoplankton extracellular releasen-p ratiomediterranean-seaenzyme-activitydiatom bloommarine-snowphosphorusbacterioplanktonflocculation1999351-3630168-6496ISI:000081886500006<Go to ISI>://000081886500006English[21,22]. Ciglene ki et al. (2003)  ADDIN EN.CITE <EndNote><Cite><Author>Ciglenecki</Author><Year>2003</Year><RecNum>11</RecNum><record><rec-number>11</rec-number><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ciglenecki, I.</author><author>Plavsic, M.Vojvodic, V.Cosovic, B.Pepi, M.Baldi, F.Ciglenecki, I Rudjer Boskovic Inst, Ctr Marine Environm Res, Bijenicka 54, Zagreb 10000, Croatia Rudjer Boskovic Inst, Ctr Marine Environm Res, Zagreb 10000, Croatia Ca Foscari Univ, Dept Environm Sci, I-30121 Venice, ItalyMucopolysaccharide transformation by sulfide in diatom cultures and natural mucilageMarine Ecology-Progress SeriesMarine Ecology-Progress Series17263mucilagebenthic diatomscon-a lectinmicroscopyadriatic seaanoxiareduced sulfur speciesvoltammetrytransparent exopolymer particlessurface-active substancestyrrhenian searogoznica lakeadriatic seaseawaterpolysaccharidesphytoplanktonmercuryadsorption200317-270171-8630ISI:000187934600002<Go to ISI>://000187934600002English[23] already reported about CPS detection of peak H catalyzed by sulphur atoms in polysaccharides excreted from plankton cultures exposed to anoxic conditions. Their catalytic peak H appears at Ep = -1.50 V. A similar peak is obtained in a model solution of sulphated polysaccharide, -carrageenan, extracted from red marine algae  ADDIN EN.CITE <EndNote><Cite><Author>Plavsic</Author><Year>1998</Year><RecNum>13</RecNum><record><rec-number>13</rec-number><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Plavsic, M.Cosovic, B.Plavsic, M Rudjer Boskovic Inst, Ctr Marine & Environm Res, POB 1016, HR-10001 Zagreb, Croatia Rudjer Boskovic Inst, Ctr Marine & Environm Res, HR-10001 Zagreb, CroatiaAdsorption of carrageenans on mercury surface in sodium chloride solution and seawaterCroatica Chemica ActaCroatica Chemica Acta233712electrodesystemsalgaeions1998233-2430011-1643ISI:000074204000004<Go to ISI>://000074204000004English[24]. A more negative peak H, at around -1.7 V, was observed in seawater samples and a connection with the presence of organic matter containing N catalytic atoms was supposed. Peak potential is a well known characteristic for a qualitative analysis  ADDIN EN.CITE Bard198048486Electrochemical methods: Fundamentals and ApplicationsBard198048486Electrochemical methods: Fundamentals and Applications[25], in our case S- and N-containing OM. Therefore, in the present work catalytic activity of protein HSA which has in the structure 15 % of nitrogen atoms and of OM containing N-atoms in natural seawater was investigated in details. As the most important segment in catalysis is a contact of catalyst itself and the electrode surface  ADDIN EN.CITE Mairanovskii196845456Catalytic and Kinetic Waves in Polarography[14], surface activity was examined, too. Alternating current (AC) voltammetry (out of phase mode) is widely applied for analysis of adsorption of surface active substances (SAS) on different phase boundaries by measuring the double layer capacitive current  ADDIN EN.CITE Cosovic1998282817Cosovic, B.Vojvodic, V.Cosovic, B Rudjer Boskovic Inst, Ctr Marine & Environm Res, POB 1016, CHR-10001 Zagreb, Croatia Rudjer Boskovic Inst, Ctr Marine & Environm Res, CHR-10001 Zagreb, CroatiaVoltammetric analysis of surface active substances in natural seawaterElectroanalysisElectroanalysisElectroanalysisElectroanalysis429106surfactantsstripping voltammetrytriton x-100capacitanceac voltammetryorganic-matterhydrophobic fractionsea-watermicrolayeradsorptioncolloidsbehaviorsamplesestuary1998429-4341040-0397ISI:000074468400014<Go to ISI>://000074468400014EnglishCosovic1998282817Cosovic, B.Vojvodic, V.Cosovic, B Rudjer Boskovic Inst, Ctr Marine & Environm Res, POB 1016, CHR-10001 Zagreb, Croatia Rudjer Boskovic Inst, Ctr Marine & Environm Res, CHR-10001 Zagreb, CroatiaVoltammetric analysis of surface active substances in natural seawaterElectroanalysisElectroanalysisElectroanalysisElectroanalysis429106surfactantsstripping voltammetrytriton x-100capacitanceac voltammetryorganic-matterhydrophobic fractionsea-watermicrolayeradsorptioncolloidsbehaviorsamplesestuary1998429-4341040-0397ISI:000074468400014<Go to ISI>://000074468400014EnglishPlavsic2000363617Plavsic, M.Cosovic, B.Cosovic, B Rudjer Boskovic Inst, Ctr Marine & Environm Res, POB 180, HR-10002 Zagreb, Croatia Rudjer Boskovic Inst, Ctr Marine & Environm Res, HR-10002 Zagreb, CroatiaAdsorption properties of different polysaccharides on mercury in sodium chloride solutionsElectroanalysisElectroanalysisElectroanalysisElectroanalysis8951212voltametry (ac, cyclic)capacitanceadsorptionpolysaccharidesmucilagesurface-active substancesbiological-activitiesseawatersugarsoceanacidsdeepsea2000895-9001040-0397ISI:000088963200004<Go to ISI>://000088963200004EnglishCosovic2007484817Cosovic, B.Leko, P. O.Kozarac, Z.Cosovic, B Ctr Marine & Environm Res, Ruoer Boskovic Inst, POB 180, Zagreb 10002, Croatia Ctr Marine & Environm Res, Ruoer Boskovic Inst, Zagreb 10002, Croatia Univ Zagreb, Min & Geol Petrol Engn Dept, Zagreb 10000, CroatiaRainwater dissolved organic carbon: Active substances by electrochemical characterization of surface methodElectroanalysisElectroanalysisElectroanalysisElectroanalysis20771919-20ac voltammetryadsorptionorganic matterrainwatersurface active substanceschloride solution interfacemercury-electrodefatty-acidswatertensionadsorptionaerosolsdropletsseawatermodel20072077-20841040-0397ISI:000250129100011<Go to ISI>://000250129100011English[26-28]. Therefore, this method was suitable to be used in our experiment. HSA solution was also measured with square wave (SWV) and cyclic voltammetry (CV). Because of the modified pulse excitation signal which has symmetric square shaped form, SWV is the most sensitive and the fastest among the voltammetric methods  ADDIN EN.CITE Bard198048486Electrochemical methods: Fundamentals and ApplicationsKounaves199747476Handbook of Instrumental Techniques for Analytical ChemistryUpper Saddle River[25,29]. The concentration of (N-POM) in seawater samples was determined by CPSA and quantitatively expressed as equivalents of a model protein HSA for which a calibration line has been done in a concentration range of the expected N-POM concentrations in natural seawater. Seasonal change of N-POM was also observed and compared to SAS and DOC changes. Experimental Instrumentation All electrochemical work was done using 663 VA Stand multimode electrode system (Metrohm, Herisau, Switzerland) and Autolab Analyzer type III (EcoChemie, Utrecht, The Netherlands). Static mercury drop electrode (SMDE) was used as a working electrode, Ag/AgCl (3 M KCl) was a reference electrode and glassy carbon (GC) rod was an auxiliary electrode. Solution was stirred with a Teflon stirrer adjusted to 3000 turns per minute. Dissolved organic carbon (DOC) content in seawater samples has been measured after a procedure of high temperature catalytic oxidation (HTCO) with TOC-VCPH instrument (Shimadzu, Japan). Methods Model protein solution and OM from natural seawater samples were electrochemically analyzed using potentiometric and voltammetric methods. Emphasis was on chronopotentiometric stripping analysis (CPSA) with constant current stripping mode, a phase-sensitive alternating current (AC) voltammetry out of phase mode (phase angle,  = 90o), cyclic (CV) and square-wave (SWV) voltammetry. Common measurement conditions for all electrochemical methods were: accumulation potential EA = -0.6 V and time of accumulation tA = 60 s, with stirring. Parameters being characteristic for CPSA were: constant reduction current I = -1 A and maximum time of measurement 5 s, whereas in AC voltammetry those were: frequency f = 77 s-1, step potential Es = 0.01 V and amplitude a = 0.01 V, in SWV step potential Es = 0.01 V, amplitude a = 0.05 V and frequency f = 100 s-1, in CV step potential Es = 0.01 V and scan rate v = 1 V s-1. The whole procedure was maintained with GPES software, version 4.9. The peak characteristics in CPSA (peak potential Ep, height (dE / dt)-1 and area - stripping time), in SWV and CV (peak potential Ep, current I and charge q) were defined after applying linear baseline. In AC voltammetric measurements the decrease of the capacitive current in the presence of SAS was measured at the potential of E = -0.6 V. CPS and AC measurements were performed in the presence of dissolved oxygen. In contrast, the response in SWV and CV is very sensitive to the presence of oxygen, so it was important to eliminate it from solution by purging it with nitrogen for 5 minutes before each measurement. Nitrogen pressure was then maintained over the solution. Reagents and electrolytes A protein human serum albumin (HSA) (Sigma, Aldrich) with 15.7 % of nitrogen content, essentially fatty acid free, with molar mass of 69 kDa was a model polymer substance. One electrolyte solution was 0.55 M NaCl, corresponding to the composition of seawater but without seawaters micro- and macroconstituents. It was prepared by diluting saturated 5.5 M NaCl solution which was made by dissolution of supra pure solid NaCl (Sigma, Aldrich). pH of 0.55 M NaCl was maintained at 8 by adding 2x10-3 M NaHCO3 to the solution. Stock solution of NaHCO3 (2x10-2M) was prepared daily from solid NaHCO3 (Sigma, Aldrich). The other electrolyte was OM free seawater which was prepared after filtration of seawater trough GF/F filter (Whatman) with pore size 0.7m, UV irradiation for 24 hours and by keeping it in a mixture with charcoal for 24 hours. After that the charcoal was filtered off and OM free seawater was obtained. No buffer was added to the seawater electrolyte as seawater is naturally a buffer solution containing carbonate buffer system  ADDIN EN.CITE Stumm1981226<style face="normal" font="default" charset="238" size="100%">Aquatic Chemistry</style>[30]. All stock solutions were prepared in MQ water from Milli-Q filter apparatus (Millipore, USA). Seawater samples ware collected in the Northern Adriatic station 101 (Fig. 1) in 4 seasons: June and October 2008 and in January and March 2009, at surface (0.5 m depth) and bottom (~31 m depth). 25 cm3 of sample was analyzed in electrochemical cell without any pre-treatment within 24 hours after sampling. Results and Discussion Surface activity of HSA In Fig. 2 adsorption isotherms of HSA in 0.55 M NaCl and in seawater obtained at EA = -0.6 V by AC voltammetry are presented. This is the potential of electrocapillary maximum at which the surface of mercury drop has maximum surface tension and its charge is zero. Therefore, adsorption of neutral, hydrophobic molecules or their hydrophobic parts is facilitated at this potential. By increasing the concentration of protein at the electrode, double layer capacitance and measured capacitive current were decreasing. Adsorption in both electrolytes followed the Langmuir isotherm  ADDIN EN.CITE Stumm199263636<style face="normal" font="default" charset="238" size="100%">Chemistry of the solid-water interface</style>[31]. In 0.55 M NaCl 2 mg dm-3 of HSA and in seawater 1.2 mg dm-3 HSA was needed to achieve complete surface coverage i.e. adsorption plateau ( = 1). Dependence of electrode surface coverage () on added HSA was linear in both electrolytes until above mentioned concentrations (Fig. 2B). Further addition of HSA up to 200 mg dm-3 did not lower the capacitive current. Catalytic properties of HSA CPSA of the model protein HSA in 0.55 M NaCl and in seawater is shown in Fig. 3 By increasing the HSA concentration, CPS peak height (dE / dt)-1 was increasing until surface coverage starts to block further catalytic effect of newly adsorbed active groups. This was starting to occur at the concentration of 0.4 mg dm-3 HSA in 0.55 M NaCl (Fig. 3A). At higher concentrations number of catalytically active N atoms in solution was increasing but they could not achieve direct contact with electrode surface because it was already covered with previously adsorbed molecules. CPSA of HSA at described conditions in seawater was possible only at concentrations lower than 0.15 mg dm-3. At higher concentrations peak H was lower or two peaks appeared. The reasons could be different orientation of catalytic groups at the electrode surface and/or different availability for catalysis. Namely, as the surface coverage increases, interactions between adsorbed molecules may be expected to become significant  ADDIN EN.CITE Honeychurch1996141417Honeychurch, M. J.Ridd, M. J.Honeychurch, MJ James Cook Univ N Queensland,Dept Molec Sci,Townsville,Qld 4811,AustraliaDerivative chronopotentiometric stripping analysis of insulinElectroanalysisElectroanalysisElectroanalysisElectroanalysis4981insulinpotentiometric stripping analysisconstant current stripping analysisserum-albuminvoltammetryelectrochemistrysubstancesproteins199649-541040-0397ISI:A1996TQ09400010<Go to ISI>://A1996TQ09400010English[32]. Higher concentrations could be analysed only at more negative value of reduction current (eq. -2 or -5 A instead of our -1 A) which will provide lower but reproducible peak H. CPS signals observed in our electrolytes were result of  presodium cathodic catalysis of electroreduction of hydrogen ions. Nitrogen atoms from HSA, bearing free electron pair, were the one that helped hydrogen ions to be reduced at the surface of mercury drop. Gaseous hydrogen was developing and peak H appeared. Its peak potential was situated at app. -1.70 V to -1.80 V, preceding the reduction of hydrogen ions on mercury without a catalyst. In general, if molecule has higher molecular mass it is catalytically more active  ADDIN EN.CITE Heyrovsky200544445[17]. Therefore, N-organic polymer like HSA was a suitable compound for producing peak H in CPSA. The height of peak H in 0.55 M NaCl and in seawater was considerably different. For example, the height of peak H in 0.55 M NaCl for 0.1 mg dm-3 HSA was 2.6 s V-1 while in seawater for the same HSA concentration the height was 15.8 s V-1. In 0.55 M NaCl the peak potential is shifted from -1.85 V to -1.78 V, while in seawater it is shifted from -1.83 V to -1.71 V, regarding the concentrations lower than 0.15 mg dm-3 (Fig. 3B). Moving of peak potential toward positive values means that the catalytic activity is favoured i.e. the process is consuming lesser amount of energy in seawater than in NaCl. The differences in catalytic properties of HSA in 0.55 M NaCl and in seawater were due to the different adsorption of HSA i.e. different composition of the electrolytes. The ionic strength of the seawater could be modelled by using the 0.55 M NaCl solution, but besides that seawater contains other macro and microconstituents, as for e.g. it contains 0.05 mol dm-3 Mg and 0.01 mol dm-3 Ca ions. They strongly influence biogeochemical processes in seawater like adsorption  ADDIN EN.CITE Plavsic1998303017Plavsic, M.Cosovic, B.Plavsic, M Rudjer Boskovic Inst, Ctr Marine & Environm Res, POB 1016, HR-10001 Zagreb, Croatia Rudjer Boskovic Inst, Ctr Marine & Environm Res, HR-10001 Zagreb, CroatiaAdsorption of carrageenans on mercury surface in sodium chloride solution and seawaterCroatica Chemica ActaCroatica Chemica Acta233712electrodesystemsalgaeions1998233-2430011-1643ISI:000074204000004<Go to ISI>://000074204000004English[24] and complexation reactions  ADDIN EN.CITE Raspor19771117<style face="normal" font="default" size="100%">Application of polarography and voltammetry to spe</style><style face="normal" font="default" charset="238" size="100%">c</style><style face="normal" font="default" size="100%">iation of trace metals in natural waters. II. Polarographic studies on the kinetics and mechanism of Cd(II)-chelate formation with EDTA in seawater</style>Thalassia JugoslavicaThalassia Jugosl.Thalassia JugoslavicaThalassia Jugosl.[33]. Stronger catalytic activity was observed in seawater (Fig. 2B) because Mg and Ca cations neutralized negatively charged groups in HSA molecule and increased the molecule's affinity toward hydrophobic mercury. Therefore, sensitivity of CPSA was enhanced in the seawater. CPSA sensitivity - comparison with SWV and CV Catalytic signals of HSA were also recorded with voltammetric methods SWV and CV. When compared to CPS method, these techniques have identical preconcentration step but they differ in the stripping step. SWV and CV apply the potential scanning in the negative direction  ADDIN EN.CITE Kounaves199747476Handbook of Instrumental Techniques for Analytical ChemistryUpper Saddle River[29] while CPS method strips material away from the electrode by applying constant reduction current  ADDIN EN.CITE Zie1992424217Zie, Y. Q.Huber, C. O.Univ Wisconsin,Dept Chem,Milwaukee,Wi 53201Constant-Current Enhanced Potentiometric Stripping AnalysisAnalytica Chimica ActaAnalytica Chimica ActaAnal. Chim. Acta632631-2potentiometrycadmiumconstant-current enhanced potentiometric stripping analysis199263-700003-2670ISI:A1992JA43900007<Go to ISI>://A1992JA43900007English[2]. If the same accumulation potential and accumulation time were applied for analysis of HSA, the results showed that constant current CPSA is a much more sensitive than both voltammetric methods. CPSA of 0.01 mg dm-3 of HSA gave well defined peak H already for 60 s of accumulation (Fig. 4C) while voltammetric methods did not give any peak even for longer accumulation times i.e. for 180 s and 300 s (Fig. 4A and 4B). Similar sensitivity results but concerning different protein solutions were reported earlier, too  ADDIN EN.CITE Kizek2001181817Kizek, R.Trnkova, L.Palecek, E.Palecek, E Acad Sci Czech Republ, Inst Biophys, Kralovopolska 135, CZ-61265 Brno, Czech Republic Acad Sci Czech Republ, Inst Biophys, CZ-61265 Brno, Czech Republic Masaryk Univ, Fac Sci, Dept Theoret & Phys Chem, CZ-61137 Brno, Czech RepublicDetermination of metallothionein at the femtomole level by constant current stripping chronopotentiometryAnalytical ChemistryAnalytical Chemistry48017320differential-pulse polarographycarbon electrodesrat-liverelectrochemical-behaviormercury-electrodesanimal-tissuesmetal-ionsvoltammetryproteinscadmium20014801-48070003-2700ISI:000171696800007<Go to ISI>://000171696800007English[3]. Calibration plot for HSA As a result of the CPS method sensitivity, peak H height obtained in seawater electrolyte could be utilized for quantitative determination of N-POM in seawater samples. We observed a straight calibration line in the concentration range from 0 to 0.15 mg dm-3 of HSA (Fig. 5). That covers the range of the peak H heights of N-POM measured in seawater samples. Calibration plot is passing through the origin and it is described with the equation (dE / dt)-1 / s V-1 = 154.1 x [HSA] / mg dm-3. Inset in Fig. 4 shows the increase of the peak H height and its shift toward positive potentials with increasing HSA concentrations. Quantitative analysis of SAS and N-POM in seawater samples from Northern Adriatic Organic matter in seawater samples from Northern Adriatic station 101 showed surfactant activity i.e. it decreased capacitive current below the capacitive current value for pure electrolyte. For longer accumulation period the decrease is higher because more SAS is adsorbed at the electrode surface. The concentrations of SAS were expressed in equivalents of Triton-X-100 for the accumulation time of 60 s and are given in Table 1. CPS analysis of seawater samples gave the peak at the potential around Ep ~ -1.7 V at the ascending part of the hydrogen evolution. That peak H is a consequence of the catalytic activity of N-POM present in seawater samples and it was analyzed concerning different accumulation times: 1 s, 30 s, 60 s, 120 s, 180 s and 300 s (Fig. 6) and stripping currents: 0.5 A, -1 A, -2 A, -5 A, -10 A and -20 A (not shown). As more polymeric material was brought to the electrode, capacitive current was decreasing, peak height and area in CPSA were increasing and peak potential was shifting toward positive values. With short accumulation times (1 s and 30 s) peak H was not obtained probable because the amount of material adsorbed was to low. Stripping currents higher than -2 A and equal or lower to -0.5 A were not suitable for measurements as either no peak H was obtained or the irregularities in the recorded chronopotentiogram were too big. According to these findings we have selected for analysis of seawater samples the accumulation time 60 s and the stripping current of -1A. Concentration of N-POM was expressed in equivalent concentration of hSA (Table 1), according to the calibration plot obtained in seawater electrolyte (Fig. 4). In samples where no catalytic activity occurred we did not obtain any peak H (represented as zero in Table 1). Peak H decreased upon purging of samples with nitrogen gas. For surface sample from 6 June 2008 the peak was 76 % smaller after purging a sample for 100 s with pure nitrogen gas. In this way oxygen was purged out of the sample what caused a faster reduction of hydrogen cations and therefore lower peak H. Purging step in CPS determination of N-POM in seawater for analytical purposes influenced the results and should not be ignored. From peak H height measured in the seawater samples we could not characterize N-POM on molecular basis, as for that some specific separation techniques and characterization methods should be included. Since monomers usually do not influence strongly the capacitive current measured at the mercury-seawater interface i.e. they have lower surface activity  ADDIN EN.CITE Plavsic1994676717Plavsic, M.Cosovic, B.Plavsic, M Ruder Boskovic Inst,Ctr Marine Res Zagreb,Pob 1016,Zagreb 41001,CroatiaAdsorption of Acrylic and Polyacrylic Acids on the Mercury-Electrode Sodium-Chloride Solution InterfaceColloids and Surfaces a-Physicochemical and Engineering AspectsColloids and Surfaces a-Physicochemical and Engineering Aspects243882-3acrylic acidadsorptionmercury electrode surfacepoly(acrylic acid)svoltammetrypulse polarographycomplexesbindingionssalt1994243-2500927-7757ISI:A1994PK37100012<Go to ISI>://A1994PK37100012English[34], we could suppose that the adsorbed polymeric organic material from seawater samples was very probably responsible for the catalytic activity. In spring/early summer and autumn in the Northern Adriatic seawater samples polysaccharides can represent significant part of the total carbon in seawater  ADDIN EN.CITE DeAngelis19939917Barbarulo, M. V.Bruno, M.Volterra, L.Nicoletti, R.Deangelis, F Univ Laquila,Dept Chem,Via Assergi 6,I-67100 Laquila,Italy Univ Roma La Sapienza,Dept Chem,I-00185 Rome,Italy Ist Super Sanita,Environm Hyg Lab,I-00161 Rome,ItalyChemical-Composition and Biological Origin of Dirty Sea MucilagesPhytochemistryPhytochemistryPhytochemistryPhytochemistry393342amphora-coffeaeformiscylindrotheca-fusiformispennatae diatomalgaediatomsmucilagesextracellular carbohydratespolysaccharidesmonosaccharides analysis1993393-3950031-9422ISI:A1993LY98400013<Go to ISI>://A1993LY98400013EnglishFajon1999101017Fajon, C.Cauwet, G.Lebaron, P.Terzic, S.Ahel, M.Malej, A.Mozetic, P.Turk, V.Cauwet, G Univ Paris 06, CNRS, Observ Oceanol Banyuls, UMR 7621, F-66651 Banyuls sur Mer, France Univ Paris 06, CNRS, Observ Oceanol Banyuls, UMR 7621, F-66651 Banyuls sur Mer, France Ctr Marine & Environm Res, Rudjer Boskovic Inst, Zagreb 10000, Croatia Natl Inst Biol, Marine Stn Piran, Piran 66330, SloveniaThe accumulation and release of polysaccharides by planktonic cells and the subsequent bacterial response during a controlled experimentMicrobiology Microbiology MicrobiologyMicrobiologyMicrobiologyMicrobiology351294dissolved organic matterpolysaccharidemicrocosmnutrientbacterial activityexcretiondissolved organic-carbonphytoplankton extracellular releasen-p ratiomediterranean-seaenzyme-activitydiatom bloommarine-snowphosphorusbacterioplanktonflocculation1999351-3630168-6496ISI:000081886500006<Go to ISI>://000081886500006English[21,22]. Macroaggregates found in the Northern Adriatic are characterized by high C/N ratio due to their low protein content having carbohydrates as a major component. They are mostly composed from heteropolysaccharides and polymethylene chains and originate from phytoplankton's cell walls  ADDIN EN.CITE Kovac2005171717Kovac, N.Mozetic, P.Trichet, J.Defarge, C.Kovac, N Natl Inst Biol, Marine Biol Stn, Fornace 41, Piran 6330, Slovenia Natl Inst Biol, Marine Biol Stn, Piran 6330, Slovenia Univ Orleans, UMR 6113 CNRS, Inst Sci Terre Orleans, F-45067 Orleans, FrancePhytoplankton composition and organic matter organization of mucous aggregates by means of light and cryo-scanning electron microscopyMarine BiologyMarine Biology2611471atomic-force microscopycoastal waters gulftransmission electronmarine snowadriatic seamicrobial sedimentsparticulate matterpolysaccharidesmucilageultrastructure2005261-2710025-3162ISI:000228974100027<Go to ISI>://000228974100027English[35]. Besides that carbohydrates are also recognized as N-containing molecules, having N mostly bound in the form of amine groups, named aminosugars  ADDIN EN.CITE Benner2003161617Benner, R.Kaiser, K.Benner, R Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA Univ S Carolina, Marine Sci Program, Columbia, SC 29208 USAAbundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matterLimnology and OceanographyLimnology and Oceanography118481muramic acidsea-waternitrogencarbonoceansurfacesedimentsseawaterbacteriachromatography2003118-1280024-3590ISI:000182050000011<Go to ISI>://000182050000011English[36]. Nutrients and sun light are crucial factors for phytoplankton's production/exudation of marine organic matter  ADDIN EN.CITE Myklestad1995141417Myklestad, S. M.Myklestad, Sm Univ Trondheim,Norwegian Inst Technol,Dept Biotechnol,Marine Biochem Grp,N-7034 Trondheim,NorwayRelease of Extracellular Products by Phytoplankton with Special Emphasis on PolysaccharidesScience of the Total EnvironmentScience of the Total Environment1551651-3phytoplanktonextracellular releaseextracellular polysaccharidesexcretionexudationnutrient limitationchemical structure of exudatesadriatic seasouthern north seamarine planktonic diatomsorganic-matterchaetoceros-affinishealthy cellscarbonexcretionseaphotosynthesischemistry1995155-1640048-9697ISI:A1995QV88500015<Go to ISI>://A1995QV88500015English[37]. The Adriatic Sea is in generally an oligotrophic semi-closed basin where phosphorus is a limiting nutrient. Its northern part, including station 101, is seasonally greatly influenced by terrigenous nutrient input of Po River, especially in spring and autumn because of the snow melting in Alps and frequent rains. In the surface samples from June 2008 high concentrations of SAS and N-POM were present, probable as a consequence of increased biological activity due to the early summer phytoplankton bloom occurring in the photic zone. Oppositely, at the bottom layer no peak H could be detected for 60 s accumulation and for 300 s there was only a hump (not shown), probable because OM produced at the surface has not sunken yet to the deeper layers and the old OM from previous season has been already mostly decomposed. Concentration of N-POM expressed as eq. mg HSA dm-3 was variable through the seasons as well as SAS and DOC having the highest values in the most productive period of biological activity (June 2008) and the lowest value in the winter period (January 2009) (Table 1.). Surface water was richer in OM i.e. concentration of N-POM, SAS and DOC was higher in surface samples than in bottom samples in all seasons. To sea which part of SAS and DOC made N-POM obtained with CPSA, we calculated N-POM/SAS and N-POM/DOC and concluded that N-POM made a minor part of a few percent of SAS and DOC in seawater samples. Conclusion The measurement of peak H position and height by constant current CPSA was a very suitable for qualitative and quantitative determination of presodium catalysts as a part of OM pool in seawater samples. Amount of N-POM was expressed as an equivalent concentration of suitable N-containing polymer model, in our case that was protein HSA. Calibration plot of HSA obtained in OM free seawater was a straight line from 0 to 0.15 mg dm-3. Peak H strongly depends on constant stripping current applied, accumulation time as well as on catalyst concentration, its structure and basic electrolyte. The concentrations of N-POM in seawater samples from the Northern Adriatic were in the range from 0.0002 to 0.071 eq. mg HSA dm-3, being higher for surface samples in the season of increased biological production (June 2008). Concerning natural water systems, peak H represents an additional parameter for the characterization of natural organic matter in seawater measured without any sample pre-treatment. A sensitive and fast constant current CPSA is a suitable method for its analysis. Acknowledgments The financial support of the Croatian Ministry of Science, Education and Sport for the project no. 098-098-2934-2717 under the title The nature of the organic matter, interaction with microconstituents and surfaces in the environment is gratefully acknowledged. We also thank Zdeslav Zovko for DOC measurements in seawater samples. References  ADDIN EN.REFLIST [1] D. Jagner, A. Graneli, Anal. Chim. Acta 1976, 83, 19. [2] Y. Q. Zie, C. O. Huber, Anal. Chim. Acta 1992, 263, 63. [3] R. Kizek, L. Trnkova, E. Palecek, Anal. Chem. 2001, 73, 4801. [4] R. D. Riso, P. LeCorre, C. J. Chaumery, Anal. Chim. Acta 1997, 351, 83. [5] R. M. Town, H. P. van Leeuwen, J. Electroanal. Chem. 2001, 509, 58. [6] M. L. Gozzo, L. Colacicco, C. Calla, G. Barbaresi, R. Parroni, B. Giardina, S. Lippa, Clin. Chim. Acta 1999, 285, 53. [7] H. M. V. M. Soares, A. A. N. Almeida, M. P. O. Castro, S. C. Pinho, M. T. S. D. Vasconcelos, Analyst 1998, 123, 1377. [8] R. M. Town, Anal. Chim. Acta 1998, 363, 31. [9] X. H. Cai, G. Rivas, P. A. M. Farias, H. Shiraishi, J. Wang, E. Palecek, Anal. Chim. Acta 1996, 332, 49. [10] M. J. Honeychurch, M. J. Ridd, Electroanalysis 1996, 8, 654. [11] J. Wang, D. H. Grant, M. Ozsoz, X. H. Cai, B. M. Tian, J. R. Fernandes, Anal. Chim. Acta 1997, 349, 77. [12] M. Tomschik, L. Havran, M. Fojta, E. PalerJ ~       ! " # % 2 9 : A C D h i j y z | } ɽࢭyhK<hok0JjhokUjhokUhWh<h%|0Jjh%|Ujh%|Uh/pBhokhVRhT0hPhvihYa(hoAh)- hvihoAh%| hvihvi h.A5 hoA5 hvi5 h/pB5/H J " # |  0=zRӢ= dgd| gd)-dgd" d`gdOdgdXOgd dgdPdgdJdKK    . / 3 ; E F M O P X Y h j m n v     & ( N d Ϳ۟~~~~h%& hv`h%& h%&h%&h@Q hv`h(_h[ hv`hg& hv`h)r hv`hJd hv`hh(h]6hv`h$qh$qh$q h!5 hvi5hPhokhK<hok0JjhokUjhokU0 0 > A D E _ ` a (/0<=>R\elϧϧ~zzvrhhX\hnhKhDhoA hGhP hGhUhv`Fh a hv`hIuh3x hv`hj hv`h!hv`h!6 h$qhj hv`hvih%&h' hv`h@Qh@Qhd)hPhR hv`hFHO    $&+,-LMprԼ̼ؼԼ԰԰hwh7hcOhhhphh%&h`0hGhvih$hPh_2hDhL)}h(?hX\h hO^GjhUhh.?\#]#`#a#b#d###################'+(+++,+/+7+8+9+?+L+S+T+W+X+\+j+m+w+{+++ ; ;;;;';5;6;(C)C,C-CмԬԨؘh+8%h|h`;h?fhshDhh;hheh_nh7hK'hLhr:h:4@hPEhnhj}Whfh%&hhh0fjhUhO^G9-C.C2C:CCCQCVC}CCCCpRqRvRwRxRyR{RRRRZZZZ [ [ [lllll m-m.m/mttttttt»ةذСԡԃ|unu h Dh h DhPE h0fh0fjhbUmH sH  hhb hhmhXOjh`;U hh0f hhPEh hth@] hthF  hth7h`;hO^GjhbUhj}Wh7hLh!~hhehsh+ttttttttu uu)u+u6u7u}}}}}}}}}~9~E~O~b~c~j~k~u~~~~~~~~~~~~ǿί|xq hhh hhhhYa(h0H*h'&hth.h0H*h0hK'h|hj}Whm~hbh0fhO^GjhbU hJ}hm~hv h Dh0 h Dh`0 h Dh~h h Dh" h Dh@] h Dh+~237AOPVXY]lY`ijɀʀˀ,-1234SvxyվղծբŖhhOhuOhh0fhO^GjhbUh3!$h`vhth hgH* hghgh1;hj}WhWAhgH*hghP|h. h.h.hyh?xehYa(hrOh0h6-9 (*TUם؝ߝ)*ʢˢϢТѢҢӢ#$&'()+,./6?@DFGU`zѭѥ՝՝h_:eh)0_hLhUhB"huh.hYa(hYa(H*hyhYa(h`0hhH*hh~hGh"huOhO^GjhOUhO h{&hOhOh:ɣˣΣأ٣ݣ+CLdlo|}()-3=CJYadkqsƫɫԫګޫ߫䰸hbhh~ h{&h)0_hh hJ4h^h"hhWhX_h DhhO^GjhbUh@]h hvh6Yhp<h5ohfh.hj}Wh)0_: Egj}~¬ĬѬ 7@AGRUYbefhz~ѭ 5=ѽŹ͵ͩhDDhhO^Gjh]ZUh fhhbagh^h6hShmh7}$h^$h;Fh Sh~h.ONhWh'&hYh}hAh, h{&h)0_hh h}9=IKMNWYZaegjnź̺ͺ-/@EFijqrst"$*,02tuyzش̴ȴة̕ȕh8Pjh?[Uh Whoh?[hA hDDhDDjh-=UhsThph-=hhO^Gjh]ZUhP#he5h'&h'h}h~h~hehhDD9&-49:BCUXflx FT^`b<=ABCDEYZ[\lmn8ȼ𤘤hGIhEh DhOhph"hF^hhO^Gjh?[UhYa(hMB7h.Ahk8hthYa(heH*h[h'&hehP#hAh}h~h]hhW689 "+,.69:@Dls .3456JLNZn k˿˻߳Ǡ󠜠߿˘˘jhVQUh]4hVQhOjh?[U h^$h^$hEh:gh/pBhAh[D$h/jh^$hh fh!!!!!"."2"4"t""""""""""####P#p#######յձխթե՞ h3xh6hh6hh8hZh3xh[Yh"H*h]h:gh_:eh?hVQh.*<h"ho6ho6H*ho6h"hth]4h|h hfh==  !#&0())1222;<FAQddgdlJ d`gdygd2ddgdJdgdh gd)-dgd gd)- d`gdc d`gdJddgd| gd)- d`gd|######$$$$ $$$$$4$6$8$:$N$$$$$$$$$$$$ %"%$%&%(%@%D%F%^%h%r%t%%%%%%%%%%%%%%%%&&&& &&&&%&̰̰ h3xhxPh3xh"H*h\h"H*h$bhht h3xh"hxPh|h:gh3xh8 h3xh6hhDh"h6h h6hH*B%&&&3&4&;&<&A&L&M&U&W&m&o&p&r&s&w&x&~&&&&&&&&&&&&&&&&&&& ' '''''' '\']'''+(,(ɽhpJhcH*hhhcH*hch$bheLh86 h\h8 h86hx|Qh86h]4h8hZhZH*hZhnOh|h3xH*h3xh|h"h"H*hDhxP h3xh"h"ht2,(.(/(0(4(8(;())))) * * **&*'*F*G*J*V*^*o*p******++++)+-+U+_+`+v+x+{+~+++++++++++++++++徺庲ʺʺʮh@{zh@{zH* h?[H*h@{zh@{zH*hZh@{zh?[h[hhFhhP+hh:g hh"h}h rh.*<h"h|h hh h[hchc:+++,#,-,3,7,?,Q,],d,,,,,,,,,----+-3-5-I-e-g-t-~------$1%1)1*1+1Q1S1111111111111111伸̰谬줠𜘜h]4hKh2A2C2D2E2L2N2Q2S2T2l2222222222222222222223333伵萌茈hpJhbhP hGh{&hp hJEh]4h]4H*h]4h"hhMB7hA9hhdShDhVQh7h"h?[h DhmT43(3+33343=3A3B3D3E3I3J3K3k3l3o3q3333333333333334 44%4&4.4J4K4N4X4k4q444444444445555ÿϻӴ׬ϥϕϑhD*hpJhhPh>0hV hVhVhhhU h~Ch~Ch>h}/h8h"hIhhdShUh ]h Dh~C h'bH*hwhhpbhh F)85253545888888888888888888888888999:@:B:D:X;;;;;;;;;<<!<%<3<7<:<><?<A<J<ؼନĨȠĜ܉h+;h hh h2dh2dh? yhUhUH*h ]h)hh7zhs!H*hs!h%nhxhUhngDh!qH*h!qhSMh Dh>0hc7hhhjh$[UhJOh a6J<M<V<X<b<c<e<f<g<h<j<<<<<<<<<<<<<<<<<<<<= =======#=/=4=M=Q=V=X=\=`=d=e=f=g=k=v=w=======>>>">*≯̸ȰܬܨĸļȤȼȼȤh `hB#h Dhg\hg\H*hxh*hEh{h8{hh+;h+;H*hth+;h.h"kh<h ]hhDh>0h9o@*>1>B>J>U>V>{>>>>>>>>>>>>>hJhcWhhchAhLQhxh(\vh2Sh'ChX?h )h ]hG<hphh|jh$[U:ppppppq#q$q,q-q.qqqqqqr r;yhFh>rhFh$ {h^Lh~hrhhohzh~Jm hh hG hh hM- hh h- hn:/hO^Gh5h hlJH*hshlJjhlJU7dCy\y{ |}5;<=>?@ALgd)-gdw d`gdQ d`gd)GhdgdJdgddi+ dgdJdgdh dgdlJzzLzTzUzVzWz\z^z_zbzezkzlzmznztzuz{zzzzzzzzzzzzzzzz{{{{{!{#{){+{,{3{4{>{C{E{G{P{T{U{W{\{a{j{m{q{x{{{𼸴Ƞhq4hPch Dhdi+hdi+H*hthdi+hTxh h ]huhX*]h5hFh>rhSHhohohnH*h'ChnAh%:ohnh>h<4={{{{{{{{{{|| |/|2|B|C|j|l|s|w|||||||]}^}g}j}t}}}}}}}}}}~~~~~~ ~!~"~T~Y~^~̵̹̹̱̹̹̹̹̽𦞦h5h'Ch*h}IH*h hFh~Jmh}I h{&h}/h h6hhVShT0 h}/h}/h"Ih}/ hdi+hdi+ hh hT0 hh h}/ hh hD;hdi+h0hPch>rhq44^~`~b~c~~~4569(*V̅҅ԅ&(9IJ_jklmstÆΆ҆چۆ𾹵Ҭ유ha-shPkhz+h#hP+h hlM hrp;h"I h"I; h4q;h h6h}Ihrph5 h~Jmh h h~JmhphHh~Jmh}Ih0h h 8 $39>CEQSTU|}~ч҇ӇՇ "#Qeno{ĈψԈ׈؈ ̽йббhr h\Ph4T_h-;hM.h.9i h h hhVShlMh4qh'Ch+ h)Ghh ha-sh2l!hHhPkhFh2SB%EM`ahpxz~ɉʉӉԉ؉ىŏʏӏۏޏߏ7:>?`qѽ๵൭ѹhlMhb]h h}h hhmhu:hjhUh%h4q h&h&hd_h2(9h4T_h*h#hVShr h&?ԟ՟ܟݟߟ|}78<=?EFLY^cΨϨefjkmvzů̯ۯܯܼԼ謸謨h%h>YyhjhEUhahch9 hlMjhi\Uhi\h3zhh hb]h9h&hhO^Gjh-=Uh-=h?DLNOQTxʸ457[`nɹԹ"%&:<=OUVXdpqºкѺͽɹɹ͵ɱ͹ɝəh#hlMhq=dh_!h hi\h4qhwzhyhtgh,hwhhz> h-^h-^h3?h-h-^h Ch^ihZh4T_h2(9h>Yyh<Ѻպ׺غܺ!(2456BCLfhi45A̼μѼڼۼGabpsظؼششششԩԴĥhlIhBehOM^ hh hh=>3hQhU$hN1hh h H*h{Uh hcEhHh hyh#hwzh}{hhz>hcE =½ͽн@ABORWryz| !*-HJMRTUlmqu˿̿Ϳ߿  '+03=?O쵱챽ѽխѱh'ChhOM^h lhf|hdh7(H*h2d hg$h7(h}/ h7(;hg$h{ h6h7(h3?h 0hPfh7(hSh.R:hlIhd?OTV[^chkoqrs '<DR;ef:;<=>?ؽؓhXJh 6hh!dh ,h{gh lh `h,*= h1 h ,hw h1 h,*=h{OhBeh#lh.R:hP%h'hg$ hf|hg$h{hv"R hf|H*hdhdH* hf|hf|h'Chf|hd2?@AKLM_`{zzrd\OrOHOH hO^GhO^GhO^GhO^GOJQJ^JhO^GhO^G5hO^GhO^G6OJQJ^JhO^GhO^G6hO^GhO^GmHsH hO^GhO^GOJQJ^JmHsHhO^GhO^G5mHsH#hO^GhO^G6OJQJ^JmHsHhO^GhO^G6mHsHhO^GhO^G6mHsHhO^GhO^GmHsHhShmHsHjhU hth7}$ hth1 hO^GhSLd&=H((t))*+l--.V/@0"112330d^`0gd DTUY[^`bd "$&hO^GhO^GmHsH hO^GhO^GOJQJ^JmHsHhO^GhO^G5mHsH#hO^GhO^G6OJQJ^JmHsHhO^GhO^G6mHsH hO^GhO^GhO^GhO^GOJQJ^JhO^GhO^G5hO^GhO^G6OJQJ^JhO^GhO^G65-.2479;=apquwxz}(( (((*(2(6(:(>(D(H(n((((((((((4)8)R)T)f)h)p))))))))))*b*f********,+0+h0UhO^GhO^G5hO^GhO^G6OJQJ^JhO^GhO^G6 hO^GhO^GhO^GhO^GOJQJ^JN ek, Electroanalysis 1998, 10, 403. [13] M. Heyrovsky, Croat. Chem. Acta 2006, 79, 1. [14] S. G. Mairanovskii, Catalytic and Kinetic Waves in Polarography, Plenum Press, New York, 1968. [15] B. Raspor, J. Electroanal. Chem. 2001, 503, 159. [16] A. J. Bard, Encyclopedia of Electrochemistry of the Elements, Marcel Dekker, New York, 1976. [17] M. Heyrovsky, in Electrochemistry of nucleic acids and proteins (Eds: E. Pale ek, F. Scheller, J. Wang), Elsevier, Amsterdam, 2005, pp. 657-680. [18] J. I. Hedges, G. Eglinton, P. G. Hatcher, D. L. Kirchman, C. Arnosti, S. Derenne, R. P. Evershed, I. Kogel-Knabner, J. W. de Leeuw, R. Littke, W. Michaelis, J. Rullkotter, Org. Geochem. 2000, 31, 945. [19] J. D. Pakulski, R. Benner, Limnol. Oceanogr. 1994, 39, 930. [20] K. Y. Borsheim, S. M. Myklestad, J. A. Sneli, Mar. Chem. 1999, 63, 255. [21] F. DeAngelis, M. V. Barbarulo, M. Bruno, L. Volterra, R. Nicoletti, Phytochemistry 1993, 34, 393. [22] C. Fajon, G. Cauwet, P. Lebaron, S. Terzic, M. Ahel, A. Malej, P. Mozetic, V. Turk, Microbiology 1999, 29, 351. [23] I. Ciglene ki, M. Plavai, V. Vojvodic, B. osovi, M. Pepi, F. Baldi, Mar. Ecol. Prog. Ser. 2003, 263, 17. [24] M. Plavai, B. osovi, Croat. Chem. Acta 1998, 71, 233. [25] A. J. Bard, L. R. Faulkner, Electrochemical methods: Fundamentals and Applications, John Wiley and Sons, New York, 1980. [26] B. osovi, V. Vojvodi, Electroanalysis 1998, 10, 429. [27] M. Plavai, B. Cosovic, Electroanalysis 2000, 12, 895. [28] B. osovi, P. O. Leko, Z. Kozarac, Electroanalysis 2007, 19, 2077. [29] S. P. Kounaves, Handbook of Instrumental Techniques for Analytical Chemistry, F. A. Settle, Prentice Hall, Upper Saddle River, 1997. [30] W. Stumm, J. J. Morgan, Aquatic Chemistry, John Wiley and Sons, New York, 1981. [31] W. Stumm, Chemistry of the solid-water interface, John Wiley and Sons, New York, 1992. [32] M. J. Honeychurch, M. J. Ridd, Electroanalysis 1996, 8, 49. [33] B. Raspor, P. Valenta, H. W. Nurnberg, M. Branica, Thalassia Jugosl. 1977, 13, 77. [34] M. Plavai, B. osovi, 1994, 88, 243. [35] N. Kova , P. Mozeti, J. Trichet, C. Defarge, Mar. Biol. 2005, 147, 261. [36] R. Benner, K. Kaiser, Limn. Oceanogr. 2003, 48, 118. [37] S. M. Myklestad, Sci. Total Environ. 1995, 165, 155.  Table 1. Nitrogen-containing polymeric organic material (N-POM), surface active substances (SAS), and dissolved organic carbon (DOC) measured in seawater samples from Northern Adriatic station 101. Conditions for SAS measurements like in Fig.2 and for N-POM like in Fig. 3. date of samplingdepth / mN-POMSAS eq. mg T-X-100 dm-3 EMBED Equation.3 DOC mg C dm-3 EMBED Equation.3 -Ep / V(dE/dt)-1 / s V-1eq. mg HSA dm-3 6 June 20080.51.7469.30.060.1920.311.570.038~31-000.08801.04026 June 20080.51.736110.0710.3630.191.850.038~310000.13601.35020 October 20080.51.7912.80.0180.2510.0721.010.018~311.7800.300.00020.2140.000910.800.0002517 January 20090.5-000.10201.010~31-000.05501.09017 March 20090.51.7724.70.030.1650.1821.250.024~311.8051.50.00960.0730.130.940.010 Figure Captions Fig. 1 Sampling station 101 in the Northern Adriatic. Fig. 2 Adsorption isotherms of HSA in 0.55 M NaCl with added 2x10-3 M NaHCO3 (pH 8) (o) and in precleaned seawater (%) measured with AC voltammetry with out of phase mode (f = 90) (A) and lower HSA concentration range of isotherms (B). Conditions: EA = -0.6 V, tA = 60 s, Es = 0.01 V, a = 0.01 V. Fig. 3 CPSA of HSA in 0.55 M NaCl with added 2x10-3 M NaHCO3 (pH 8) (o) and in precleaned seawater (%). Conditions for AC as in Fig. 2, conditions for CPSA: EA = -0.6 V, tA = 60 s, I = -1 A. Fig. 4 CV (A), SWV (B) and CPSA (C) of 0.01 mg dm-3 of HSA in precleaned seawater, accumulation time: 60 s (----), 180 s (- - -) and 300 s (- - -). Measurement without added HSA (%). Conditions for CV: EA = -0.6 V, Es = 0.01 V, v = 1 V s-1; for SWV: EA = -0.6 V, f = 100 s-1, a = 0.05 V, Es = 0.01 V, and for CPSA as in Fig. 3. Fig. 5 Calibration line for HSA in precleaned seawater. Inset: CPS signals of HSA, concentrations in mg dm-3: 0) 0, 1) 0.022, 2) 0.033, 3) 0.055, 4) 0.066 and 5) 0.078. Other conditions as in Fig. 3. Fig. 6 Different accumulation times applied for CPSA of seawater sample from Northern Adriatic station 101, depth 31 m, sampled on 17 March 2009. Conditions: EA = -0.6 V, I = -1 A, tA: 1) 1 s, 2) 30 s, 3) 60 s, 4) 120 s, 5)180 s and 6) 300 s.     PAGE  PAGE 1 0+6+:+z+|+~+++++++++++2-L-N-V-Z-^-b-h-l----------T.^.h.j.r.v.z.~.../6/8/@/D/δzzhO^GhO^GmHsH hO^GhO^GOJQJ^JmHsHhO^GhO^G5mHsH#hO^GhO^G6OJQJ^JmHsHhO^GhO^G6mHsHhO^GhO^G6OJQJ^JhO^GhO^G6 h0hO^GhO^GhO^G5 hO^GhO^GhO^GhO^GOJQJ^J h0h00D/H/L/R/V/0"0*0.02060<0@0^0`0v0x0z0|000000011 11111"1:1<1>1@1J1L1V1X1\1~111111111L2P2x2z22󻭥h0 hO^GhO^GhO^GhO^GOJQJ^JhO^GhO^G5hO^GhO^G6OJQJ^JhO^GhO^G6h0mHsHhO^GhO^G5mHsHhO^GhO^GmHsH hO^GhO^GOJQJ^JmHsHhO^GhO^G6mHsH7222222222222233 333,3.30323N3l3n3v3z3~333333333334 44444H44444$5&5.5l555555555F6J6r6t666666677 7777hO^GhO^G6OJQJ^JhO^GhO^G6h0 hO^GhO^GhO^GhO^G5hO^GhO^GOJQJ^JL3425567788.9999999999999999 0^`0gd: 0^`0gdO^GgdO^G0d^`0gd77777777777777777788 888886888N8P8888888888888º³³º³³ttitihO^GhO^GmHsH hO^GhO^GOJQJ^JmHsHhO^GhO^G5mHsH#hO^GhO^G6OJQJ^JmHsHhO^GhO^G6mHsHh0 hO^GhO^GhO^GhO^G6hO^GhO^GOJQJ^JhO^GhO^G5#hO^GhO^G6OJQJ^JmHsHhO^GhO^G6mHsHhO^GhO^GmHsH(89999 9$9*9.9Z9999999999999999:b:d:::::R<Z<<ĹĹᱤ}yriyryrybWh.Vh3!$mHsH h,*=h3!$hAh3!$CJ hAh3!$h3!$hD, h,h{hxjhU hO^GhO^GhO^GhO^G6hO^GhO^GOJQJ^JhO^GhO^G5hO^GhO^GmH sH  hO^GhO^GOJQJ^JmH sH hO^GhO^G5mH sH #hO^GhO^G6OJQJ^JmH sH hO^GhO^G6mH sH "999999999999999999999999999 $da$gdD, 0^`0gd:9<:<N<Z<b<<<<<=d$+ &P#$/Ifgd*B $d$+ &P#$/Ifa$gd*B dgd3!$ <<<<<<<<<<<<<=======*=.=:=>=\=`=d=f=h=j=l=n===ɼ൭vnf^^^ܵVVܦh3!$mHsHhN+h3!$H*hN+h3!$H*hAh3!$>*!jhih3!$EHUmHsH%j儡M h3!$CJUVaJmHsHjh3!$UmHsH h,*=h3!$hAh3!$H* hAh3!$jhN+h3!$EHU%j愡M h3!$CJUVaJmHsHh3!$jh3!$Uh.Vh3!$mHsHh.Vh3!$H*mHsH!==#kd$$Ifl4 ֞ (-16 d$  t 6P+ D744 lap<= = ==@=d=f=h=j=l=n=|==========Ff $d$+ &P#$/Ifa$gd*B ============>> > >>>D>P>\>f>>>>>>>,?.?@@@@@ AAAAAA A4AAAAAAAAAB B BBBpBŽhKhNLH*h0h0H*h0hhxhHh7hNL hD, 5h%nhNL5hShD, CJhSh3!$CJhD, h3h3!$hpbh3!$mHsHh3!$mHsH h,*=h3!$h3!$8==kd $$Ifl4  v4(-16 $  t 6P+ D7$$$$44 la=======> >>$d$+ &P#$/Ifa$gd*B >>kd $$Ifl4  v4(-16 $  t 6P+ D7$$$$44 la> >*>2>>>D>P>\>f>p>|>$d$+ &P#$/Ifa$gd*B |>~>kd $$Ifl4S  v4(-16 $  t 6P+ D7$$$$44 la~>>>>>>>>>>$d$+ &P#$/Ifa$gd*B >>kd$$Ifl4  v4(-16 $  t 6P+ D7$$$$44 la>>>>>>???*?$d$+ &P#$/Ifa$gd*B *?,?kd$$Ifl4  v4(-16 $  t 6P+ D7$$$$44 la,?.?6?B?L?Z?f?v???$d$+ &P#$/Ifa$gd*B ??kd$$Ifl4  v4(-16 $  t 6P+ D7$$$$44 la??????????$d$+ &P#$/Ifa$gd*B ??kd$$Ifl4  v4(-16 $  t 6P+ D7$$$$44 la??????@ @@@$d$+ &P#$/Ifa$gd*B @@kd$$Ifl4  v4(-16 $  t 6P+ D7$$$$44 la@.@8@@@L@T@^@j@v@@@$d$+ &P#$/Ifa$gd*B @@kd{$$Ifl4  v4(-16 $  t 6P+ D7$$$$44 la@@@@@@@@@@$d$+ &P#$/Ifa$gd*B @@kdr$$Ifl4;  v4(-16 $  t 6P+ D7$$$$44 la@@@AA AAAACCC\E^EnEH HHIIK $da$gd0 $da$gdNLdgdNL hd7$8$H$gdNLgdD, $da$gd3!$ $da$gdD, pBrBBBBB.C8CPCRCxCzCCCCCCCCCCCCCCCCDD6D>DBDDDRDTDDDDDEE(E*E2E4E>E@ERETEVE^EjEEEEEEEEEFF Fļذh' h'h'hhNLH*hkhKhNLH*h0h0H*h0h7hHhA7 hNLH*hx hxH*hNLOJQJhchNLOJQJhNLhh> F0F2FLFNFTFVFXFZF\F^F`FbFfFxFzFFFFFFFFFFFFFGGG G(G*G8G:GJGLGRGVGnGpG~GGGGGGGGGGGGGGHHJHLHHHHHIIIIJJvJJJӽӹh7hth0H* ha~h0 hoEh0h0hh+0hNLH*h+0hNLH* h'H*hkheh'hNLHJJJJKKK KKKK,K.K>K@KRKTKdKfK~KKKKKKKKKKKKKKKKKKKKKKKKKKƱh(b0JmHnHuh(b h(b0Jjh(b0JUhjhU h^QhNLhhH*hh'hNLh\WhNLH*,KKKKKKKKKKKKKKKKKKh]hgdPq &`#$gd#& 0^`0gdNL,1h. A!"#$% 51h0:pD, A .!"#$% 21h:pD, . A!"#$% DyK strmecki@irb.hryK Fmailto:strmecki@irb.hryX;H,]ą'cDyK plavsic@irb.hryK Dmailto:plavsic@irb.hryX;H,]ą'cDyK cosovic@irb.hryK Dmailto:cosovic@irb.hryX;H,]ą'c*Dd lb  c $A? ?3"`?2tԒ=+l54P`!HԒ=+l54@8 xcdd``>$d@9`,&FF(`T A?d0@0&dT0pE1At 2Bab`rW wfjQ9A $37X/\!(?71!bD VpZ^*v b&# F\w2 bcr@EN1~\P_p} v] `PؼcdbR ,.Ie`C 3ԯL`>f~F|*Dd b  c $A? ?3"`?2tqEyہʋ+#EP`!HqEyہʋ+#Eٚ@8 @2xcdd``>$d@9`,&FF(`TŁMRcgbR xl zjx|K2B* Rj8 :@u!f0)09Y@V;35V ZZsy"+8|-ϗ b&# F\;apwN43v2D}S9"G@|?./>;.v0o(l121)W20ԡYW&0h3X?Fy3$$If!vh5 55d5$ 555#v #v#vd#v$ #v:V l4  t 6P+ D7++++++,5 55d5$ 5/ p<s$$If!v h5 55555$ 555 #v #v#v#v#v#v$ #v :V l4: t 6P+ D7++++++, 5 55555$ 5 / pPkd$$Ifl4:  v4(-16 $  t 6P+ D7$$$$44 lapP$$If!v h5 55555$ 555 #v #v#v#v#v#v$ #v :V l4 t 6P+ D7+, 5 55555$ 5 / $$If!v h5 55555$ 555 #v #v#v#v#v#v$ #v :V l4 t 6P+ D7+, 5 55555$ 5 $$If!v h5 55555$ 555 #v #v#v#v#v#v$ #v :V l4S t 6P+ D7+, 5 55555$ 5 $$If!v h5 55555$ 555 #v #v#v#v#v#v$ #v :V l4 t 6P+ D7+, 5 55555$ 5 $$If!v h5 55555$ 555 #v #v  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJLMNOPQR]WZ[\`a^_bcfghijklmnopqrstuvwxyz{|}~Root Entry FJ`Y Data K{WordDocumentObjectPool|HJ`_1302430950 F|H|HOle CompObjfObjInfo  !"#% FMicrosoft Equation 3.0 DS Equation Equation.39q2X{D N-POMSAS FMicrosoft Equation 3.0 DS EqEquation Native N_1302430949 F|H|HOle CompObj fuation Equation.39q2 N-POMDOCOh+'0 ( D P \ ht|Materials and method1ateObjInfo Equation Native  N1TableeSummaryInformation( #v#v#v#v$ #v :V l4 t 6P+ D7+, 5 55555$ 5 $$If!v h5 55555$ 555 #v #v#v#v#v#v$ #v :V l4 t 6P+ D7+, 5 55555$ 5 $$If!v h5 55555$ 555 #v #v#v#v#v#v$ #v :V l4 t 6P+ D7+, 5 55555$ 5 $$If!v h5 55555$ 555 #v #v#v#v#v#v$ #v :V l4 t 6P+ D7+, 5 55555$ 5 $$If!v h5 55555$ 555 #v #v#v#v#v#v$ #v :V l4 t 6P+ D7+, 5 55555$ 5 $$If!v h5 55555$ 555 #v #v#v#v#v#v$ #v :V l4; t 6P+ D7+, 5 55555$ 5 /  Strmecki antrmtrmNormali lfks-martan2ksMicrosoft Word 10.0@F#@^p@"@"B{՜.+,D՜.+,@ hp|  IRB*iA DocumentSummaryInformation8CompObj$jMaterials and method Title PLT`x _PID_HLINKS_AdHocReviewCycleID_EmailSubject _AuthorEmail_AuthorEmailDisplayName_PreviousAdHocReviewCycleID_ReviewingToolsShownOnceA(?mailto:cosovic@irb.hr%mailto:plavsic@irb.hr:mailto:strmecki@irb.hr+Revplavsic@irb.hrSMartac@U art  FMicrosoft Word Document MSWordDocWord.Document.89q@@@ ^QNormalCJ_HaJmH sH tH\@\ )- Heading 1$ & Fd<@&5KH \^JaJ \@\ )- Heading 2$ & Fd<@&5\]^JaJVV )- Heading 3$<@&5CJOJQJ\^JaJJJ )- Heading 4$<@&5CJ\aJNN )- Heading 5 <@&56CJ\]aJHH )- Heading 6 <@&5CJ\aJ:: )- Heading 7 <@&@@ )- Heading 8 <@&6]N N )- Heading 9 <@&CJOJQJ^JaJDA@D Default Paragraph FontRi@R  Table Normal4 l4a (k(No List 4 @4 PqFooter  p#.)@. Pq Page Number44 YHeader  p#j#j c Table Grid7:V0H2H vi Balloon TextCJOJQJ^JaJA ~#LhitQ ~#Lbf*Wa* ~#LStrong5\4U@q4 .ON Hyperlink >*ph$$ spelle  4Style Heading 1 + Justified Line spacing: 1.5 liness.es"#|0=zIӘ  ?@uvǷȷQR{|ϸиMbcdopt0000000000000 0M90M90M90,dwM90$wM90\wM90wM90pwM90pwM90qwM90\uwM90 uwM90"uwM90$ {wM90&D{wM90My00My00My00@0My000 $$$$$$$$$$$$$$$' -Ct~=8k#%&,(+135J<*>[HRRS[pz{^~ѺO?0+D/278<=pB FJK     &'(*+.1FGH= dL399====>>|>~>>>*?,?????@@@@@@KK),-/023456789:;<=>?@ABCDEIKCiy\`'"+"" 2252(:,::pIvIIQQ Rcc.dkk6lttw,1Tדߓ)ʘϘ̯Eiq6BG>%qyM U chr#&&h,114::>DDDLLORSeS3Y7Y=[pbtbiottvCKh=ԔٔJbgΨ[ζ sXXXQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ::  '!!8@0(  B S  ? |w<}w+~wwT!w!w<ww\!w\1wt_wwfw#wl"wgwܲw$w\#w\ }wtwwtwL9"w#wdw ww|wd"w\uw|}tw/iIy)2jj$$.ZZTBe}ekng̡*5t      !!K{0=qq,33\\V See|ziΡ;Ft  8*urn:schemas-microsoft-com:office:smarttagsCityB*urn:schemas-microsoft-com:office:smarttagscountry-region:*urn:schemas-microsoft-com:office:smarttagsStreet; *urn:schemas-microsoft-com:office:smarttagsaddress9*urn:schemas-microsoft-com:office:smarttagsplace  %sz{Cz =Q+l.lu uaucuqutuuuuuuuv vvvvvvvewjwwwpxPYӇڇDJ$&)+Z`t~ T_  ')0CK_hZeACIKUWZ\be=A}^!b!!!!!''(()) ) )))5272J2L2222222::::o;s;<< ====>>DD"M)M?NKNNNYYbZnZNdPdSdUdLgNgohqhvhxh}hhhhhhhh jj*j,jjjamhmN]  %21<$/u{&ryzШ +/15LQV]bié  ϪЪ  %)+/ILaglu«ʫΫЫ߫ $(09AEGKckpv{ͬѬ#KQVa!$)05=Ʈή֮ۮ '.JR_ego¯įƯȯ˯ί$%)+-/25ǰɰ").5DHޱ"'.0?W^fjovx*/޳]t{´ɴдԴִڴܴߴ+469Ͷ{x|ӹ޹QSƺк!#35wͻλӻԻ  LMMOOPPRSUVXYadnqtCzLMMOOPPRSUVXYadntCz0=C2UQy47? .!c((MMxbbL\д8_MMOOPPRSUVXYqtCzMMOOPPRSUVXYqt lfks-marta dA} <8sm{V(PYadorvxc7fY5o),3?fK|3>A%EK7[s = SA 2h  B+ 6 s~ + <  D, *B O dV ~` r 2 8 D cE H Tc h o W - K :>r.|yAR^it CNSeP|O *H'bAzTg\s;#"kfos""k8@EF A?KF^cfsN}+r:a @HVwa #}Aeo ri 'hko{\1NY%|~m C!&Hsy!T0<( 0Ywx]z79S`I %[ 2l!l!J" "]u"|"##B#L#i#3!$D#$[D$|h$v$7}$% %+8%!O%P%U%^%zi%#& 1&6&g&'-'4'k>'9C'JJ'K' ((7(.R(T(Ya( )@) F)X)d)4j) *!*D*S*!t*'+=+@+J+di+z+j, ,N,M-)-c- -...g.{.n:/%0y0}0+1N1l~1_23323=>3H3-4<4?4}C4H4]45e5g5B6 6 6]6c6o6q6.r66MB7_J7c7)8f8 h8Uu8-9v'92(9f*999::i1:F:.R:e;-;1;oG;`;s;.*<G<[<p<=,*=-=p=>1,>PD>Q>Sp>z>Y~>X??~J?@C @:4@A@N@-A.AB&B$BR>B/pB'C C2C~COD DID"UDuYD/aDngDEJEcEKEPEFFv`F3G7GTGO^G)`GHHWwH"IIGI II{KI[TI|I}IpJ-zJ*K0KPKL!L~#LNLeLlMMM.ONUSN}Nb"O:*OCO+IOIOJO;VOXOcOrOuOPgP,P LP\P]`PhPQVQdQx|QLRv"RVRdS S-SPSVSeS~SS"T?T$GTSTkTmTsT{UMV% WW WWa1WucWj}WpX X!4X6YXY[Y!sY|YZZ13Z=>Z?[$[=[D[Yt[i\\l-\b\]X*]@]b]^^-^OM^ N^6_(_)0_4T_d_l_^u_`V`i`djPkAZkok ll)limm\-m~JmzsmK}m%nkn%n_0n&4n_n%knoJ*o12o9o%:o sopxQpSph]plp$qPq[tq r|r)r~hr7wr~ra-s>sDsL^st=tyt uuIu]uu(\v`v% wDjw%x3xHSx? yy>Yyey*yy7z[zFQz@{z8{/ {$ {qE{}{1|f|k|L)}F6}I}J}W}-r}C~p~=~Oo~y(UxJ4ETzbl<Ml-,ojnr!~?~ %&GI8E7hI>?|C1viu0k@mY FI$b}]f3zW'&iW;s#f1Fh '75l_eq46?Ur}g$>0}15zz~A@Q-Wydd;0;`e?h*-G3OCQ[uwf%L7t]!^d% 37`J, E"#16QUWpC !$;LR[Dsps${'o ^^$kk{guy^6E\MEOq;DvH!69nOdv#01GR2d7k P+@ZJx?;FG2$);?cwa/M.BxPUCbT/j00q4_^(bco#E_!U$.^grprs \^w} /OMPZ2gJgzn8q/ o'Weqp MxP'SMc^>LPnp7>V ` fs 47c!-DXJb5 XDSH #PIX)#q47FX:A\Jdx'7 -ze dB8O_|/8nB"a8<GLYw+bGKSMxM>b1";K `n{&E}NgrPSV=}"9`JN?@LPVZ_ejouvw{}ǷȷɷͷϷѷӷٷ۷  $*/6<DIQRbfhjlrty{|}ĸɸϸиѸո۸߸tK*(0K*(0EN.InstantFormati EN.Librariesjw<ENInstantFormat><Enabled>1</Enabled><ScanUnformatted>1</ScanUnformatted><ScanChanges>1</ScanChanges></ENInstantFormat>^<ENLibraries><Libraries><item>CPSA.enl</item><item>aeeri.enl</item></Libraries></ENLibraries>@$uu?????f'f(52535657ohoks@@@@@$@@@P@@@@@@@@@@@@"@$@L@@:@x@@F@@@L@@@@ @@(UnknownGz Times New Roman5Symbol3& z Arial5& zaTahoma"1fffB{*B{*!4dii 2qHX ?.Materials and methodStrmecki lfks-marta