Pregled bibliografske jedinice broj: 39495
Artificial intelligence based analysis of met-enkephalin induced immunomodulation in multiple sclerosis.
Artificial intelligence based analysis of met-enkephalin induced immunomodulation in multiple sclerosis. // Book of Abstract Math/Chem/Comp 2000 / Graovac, Ante ; Plavšić, Dean ; Pokrić, Biserka ; Smrečki, Vilko (ur.).
Zagreb: Math/Chem/Comp, 2000. (poster, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 39495 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Artificial intelligence based analysis of met-enkephalin induced immunomodulation in multiple sclerosis.
Autori
Štambuk, Nikola ; Mašić, Nikola ; Brinar, Vesna ; Štambuk, Vjera ; Rabatić, Sabina ; Marotti, Tanja ; Šverko, Višnja ; Marušić-Della Marina, Branka ; Brzović, Zdravko ; Zurak, Niko ; Svoboda-Beusan, Ivna ; Mažuran, Renata ; Karaman, Ksenija ; Gagro, Alenka ; Rudolf, Maja ; Malenica, Branko ; Konjevoda, Paško ; Pokrić, Biserka
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Book of Abstract Math/Chem/Comp 2000
/ Graovac, Ante ; Plavšić, Dean ; Pokrić, Biserka ; Smrečki, Vilko - Zagreb : Math/Chem/Comp, 2000
Skup
Math/Chem/Comp 2000 - the 15th Dubrovnik International Course & Conference on the Interfaces between Mathematics, Chemistry and Computer Sciences.
Mjesto i datum
Dubrovnik, Hrvatska, 19.06.2000. - 24.06.2000
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
met-enkephalin; immunomodulation; multiple sclerosis; decision tree classifier; prognostic parameters
(met-enkephalin; immunomodulation; multiple sclerosis; decision tree classifier; prognostic parameters; neural network)
Sažetak
We present the analysis of met-enkephalin (LUPEX) induced effects on 52 different immunochemical parameters that define cellular and humoral immune response. In addition to the standard statistical analysis we used artificial intelligence data mining methods, i.e. nonlinear machine learning approach with C4.5 decision tree classifier and self organising artificial neural network. It is shown that artificial intelligence based methods of data analysis provide useful alternative to the standard statistical approach, enable the extraction of few relevant immunochemical parameters with their mutual relationships, and ensure accurate prediction of the response to drug treatment.
Izvorni jezik
Engleski
Znanstvena područja
Javno zdravstvo i zdravstvena zaštita, Farmacija
POVEZANOST RADA
Ustanove:
Imunološki zavod d.d.,
Institut "Ruđer Bošković", Zagreb
Profili:
Biserka Pokrić
(autor)
Vesna Brinar
(autor)
Nikola Štambuk
(autor)
Ivna Svoboda-Beusan
(autor)
Ksenija Karaman
(autor)
Vjera Štambuk
(autor)
Sabina Rabatić
(autor)
Tatjana Marotti
(autor)
Ana-Višnja Šverko
(autor)
Nikola Mašić
(autor)
Alenka Gagro
(autor)
Zdravko Brzović
(autor)
Branka Marušić-Della Marina
(autor)
Renata Mažuran
(autor)
Branko Malenica
(autor)