ࡱ> Z\Y @Ubjbj $X 4444444H8dl|H $!RR#A4A44&4444 1|0 b$wpb$HH4444b$4AAHHd $HHDIFERENTIAL SCANNING CALORIMETRY ANALYSIS OF POLY(3-HYDROXYBUTYRATE) NANOCOMPOSITES Matko Erceg*, Tonka Kova i, Ivka Klari Faculty of Chemistry and Technology, Department of Organic Technology, Teslina 10/V, 21 000 Split, Croatia * E-mail: merceg@ktf-split.hr; tel: ++ 385 21 329 459; fax: ++385 21 329 461 Polymer nanocomposites consisted of biodegradable poly(3-hydroxybutyrate) (PHB) and organically modified montmorillonite Cloisite30B (30B) as nanofiller (PHB/30B 100/1, 100/3, 100/5, 100/7 and 100/10 by weight) were prepared by solution intercalation method [1,2]. Melting and crystallization behaviours of pure PHB and PHB/30B nanocomposites were investigated by differential scanning calorimetry (DSC), (Perkin-Elmer DSC-4). Samples of 5.00.4 mg were heated from 50-190C (heating scans), kept at 190C for 1 minute and then cooled to 50C (cooling scans) in the nitrogen atmosphere (30 cm3min-1). The data obtained are shown in Table 1. Pure PHB shows one endothermic peak (the melting temperature, Tm1) indicating presence of one crystalline phase. PHB/30B nanocomposites show two endothermic peaks (the melting temperatures, Tm1 and Tm2) indicating presence of two crystalline phases of different molecular weight. This suggests that 30B probably acts as a nucleating agent for PHB and Tm2 is related to the nucleating effect of 30B. Values of Tm1 and Tm2 of PHB practically do not change, while the overall melting enthalpy (DHm) and consequently the overall degree of crystallinity (Xc) decrease with 30B loading compared to pure PHB, respectively. Due to the intercalation of PHB chains into 30B layers, intercalated parts of PHB chains are restricted and may not crystallize what causes the decrease of Xc. The effect of 30B on the crystallization of PHB was studied from cooling scans. The crystallization temperature (Tc) of PHB/30B nanocomposites increases with 30B loading compared to pure PHB. The addition of 30B in amounts up to 5 wt. % increases the crystallization rate (rc=DHc/t; [3]), the enthalpy of crystallization (DHc) and the degree of crystallinity during cooling (Xcc) of PHB, respectively. The most pronounced effect was observed at 3 wt. % of 30B. This is attributed to the heterophase nucleation effect of 30B on PHB crystallization due to its enormous surface area (>750m2g-1). Higher 30B loadings decrease these values compared to pure PHB probably due to agglomeration of 30B particles in the PHB matrix, i.e. to decrease of the surface area and consequently nucleating effect. Obviously, in amounts up to 5 wt. % 30B influences the crystallization of PHB in two opposite ways: it acts as effective nucleating agent and increases rc of PHB, while due to intercalation the overall Xc of PHB is decreased. Higher loadings *BRXL N  8 : ^ l ƻ|qqfq[qPh)|dh,lmH sH h)|dhJu^mH sH h)|dhimH sH h)|dhTCmH sH h)|dhmH sH h)|dhMgmH sH h)|dh}mH sH hEmH sH h)|dhJa#mH sH h)|dhJmH sH h)|dhe9+mH sH h)|dhe9+5mH sH hPQ5mH sH h)|dhJa#5mH sH h)|dh=5mH sH h)|dhz5mH sH \ 9 : v @0B00000 $$Ifa$gd= $$G$Ifa$gd=gd$9pgde9+$a$gde9+UU ; > @ A B C ^ h i ( H    " $ v Ծ~~sh]h)|dhHrmH sH h)|dh$9pmH sH h)|dh9p#mH sH h)|dh=H*mH sH h)|dh mH sH h .mH sH h)|dh=mH sH h)|dhzmH sH h)|dh<=mH sH h)|dhhmH sH h)|dhJa#mH sH h)|dhRYmH sH h)|dh,lmH sH h)|dhJmH sH h)|dhJu^mH sH # TX^h  ԸxmbmmԸUh)|dhPaJmH sH h)|dhmmH sH h)|dh;"mH sH h)|dhfymH sH h)|dh9p#aJmH sH h,aJmH sH h)|dh)|daJmH sH !h)|dhP6H*]aJmH sH &h)|dhP6OJQJ]aJmH sH h)|dmH sH h)|dh9p#mH sH h)|dhHrmH sH h)|dh:RmH sH h)|dh)|dmH sH ! ":\df*46:t輱yqfRARA!h)|dhP6H*]aJmH sH &h)|dhP6OJQJ]aJmH sH h)|dh($ImH sH h .mH sH haKmH sH hj6hj66H*]mH sH hj6hj66]mH sH hj6mH sH h)|dhmH sH h)|dhHrmH sH h)|dh9p#mH sH h)|dhkmH sH h)|dh"`mH sH h)|dh`mH sH h)|dhfymH sH h)|dhPaJmH sH 8HJLNPRTV"#$ʽ{qf{f[PHhu#mH sH h)|dhmH sH h)|dh$9pmH sH h)|dhPmH sH haKCJmH sH !h)|dhP6H*]aJmH sH h)|dhP6]aJmH sH &h)|dhP6OJQJ]aJmH sH h)|dhPaJmH sH h)|dhHraJmH sH h)|dh`aJmH sH h)|dhHrmH sH h)|dhnp?mH sH haKmH sH h)|dh`mH sH $)D[n'(234568Rl⹮zoaRozzh)|dhP6H*]mH sH h)|dhP6]mH sH h)|dhPmH sH h)|dh$9pmH sH h)|dhWmH sH haKmH sH h)|dh mH sH h)|dhfymH sH h)|dhkmH sH h .mH sH !h)|dh"6H*]aJmH sH h)|dh"6]aJmH sH hu#mH sH h)|dhmH sH h)|dh"mH sH  \^`b̼r^N=!h)|dh 6H*]aJmH sH h)|dh 6]aJmH sH &h)|dh 6OJQJ]aJmH sH h)|dhPCJmH sH h)|dh mH sH h)|dh aJmH sH &h)|dhP6OJQJ]aJmH sH !h)|dhP6H*]aJmH sH h)|dhP6]aJmH sH h)|dhPmH sH h)|dhHrmH sH haKmH sH h)|dhkmH sH h)|dh.mH sH bdnt0\^pr1678:=g{±ݞuiiu^SSݞh)|dhmH sH h)|dhkmH sH h83:h83:H*mH sH h)|dh;mH sH h)|dh"mH sH h)|dhmH sH haKmH sH h)|dh$9pmH sH h83:mH sH !h)|dh 6H*]aJmH sH h)|dh 6]aJmH sH h)|dh.mH sH h)|dh*mH sH h)|dh mH sH h)|dh CJmH sH  ()/Unuv000 0*0ĵ媢xg]S]Q]ĵ]UhaKaJmH sH h$LaJmH sH !h)|dh$L6H*]aJmH sH h)|dh$L6]aJmH sH h$Lh$L6]aJmH sH h83:aJmH sH h83:mH sH h)|dh"mH sH h$Lh$L6H*]mH sH h$Lh$L6]mH sH haKmH sH h)|dh$LmH sH h$LmH sH h)|dh$9pmH sH h}<mH sH decrease both rc and Xc of PHB. Table 1. DSC data for PHB/30B nanocomposites. SAMPLEMeltingCrystallizationTm1 / CTm2 / CDHm / Jg-1Xc / %Tc / CDHc / Jg-1Xcc / %rc / Jg-1s-1PHB166.06-97.5766.83102.4262.4342.760.316PHB/30B 100/1167.94157.7093.0764.38108.4171.1949.250.473PHB/30B 100/3168.05154.5786.4260.97109.3169.1748.800.538PHB/30B 100/5167.90160.4385.6161.57105.8865.7147.260.341PHB/30B 100/7167.94156.5079.9558.59105.6657.8942.430.300PHB/30B 100/10167.23156.6080.8960.94105.1060.0645.250.310 *0,0.0>0@0B0T0000000000000111 11111(1*1,16181}l^l^l^P^l^Ph)|dh9p#CJH*mH sH h)|dh9p#CJH*mH sH  h)|dh9p#CJOJQJmH sH h)|dhrmH sH h)|dh9p#CJmH sH h)|dhrCJmH sH hS5mH sH h)|dh9p#mH sH h)|dh=mH sH h}<haKCJmH sH hj6mH sH h$LaJmH sH !h)|dh$L6H*]aJmH sH h)|dh$L6]aJmH sH 000011(181N1^1x1}oooooooc $$Ifa$gd $$G$Ifa$gd $$G$Ifa$gd=tkd$$If4FS$  n n  $    44 laqp 81:1<1>1H1N1P1T1`1b1l1p1r1v1x1z111111222:2s2t2|2222223:3;34TJTnTT U0U2U⻮⻮⻮⻮⻮⻮⻤rhaKhWCJaJmH sH "haKhz6CJ]aJmH sH haKhzCJaJmH sH UhaKCJmH sH h)|dhrCJmH sH h)|dhrmH sH h)|dh9p#CJH*mH sH h)|dh9p#CJH*mH sH h)|dh9p#CJmH sH  h)|dh9p#CJOJQJmH sH )x1z1111111111 $$Ifa$gd= $$G$Ifa$gd=Ff, 11kd3$$If S Q kk $ nnn $$$$$44 laqp(112 2222%2+212 $$Ifa$gd= $$G$Ifa$gd= 1222kdC$$If S Q kk $ nnn $$$$$44 laqp(22@2G2N2T2Z2a2g2m2s2 $$Ifa$gd= $$G$Ifa$gd= s2t2kdE $$If S Q kk $ nnn $$$$$44 laqp(t2222222222 $$Ifa$gd= $$G$Ifa$gd= 22kdG $$If S Q kk $ nnn $$$$$44 laqp(2222222222 $$Ifa$gd= $$G$Ifa$gd= 22kdI $$If S Q kk $ nnn $$$$$44 laqp(23333!3(3.343:3 $$Ifa$gd= $$G$Ifa$gd= :3;3kdK$$If S Q kk $    n   n  n  $$$$$44 laqp(;3<3T2UUUUgdaKgdz[1] M. Erceg, T. Kova i, I. Klari, Thermochimica Acta 485 (2009) 26-32. [2] M. Erceg, T. Kova i, I. Klari, Macromolecular Symposia 267 (2008) 57-62. [3] C. F. Ou, M. T. Ho, J. R. Lin, Journal of Applied Polymer Science 91 (2004) 140-145. 2UxUUUUUUh3kh)|dh mH sH "haKh 6CJ]aJmH sH haKh CJaJmH sH ":p>7. A!"#$%$$If!vh5N554#vN#v#v4:V 4$+,55n/  /  / /  /  / / aqp0$$If!v h5N55555555 #vN#v#v#v#v#v#v :V 4$+, 555n55n55 n/  /  / / /  / / / / / /  / / /  /  /  /   aqpZkd$$If4 S Q kk $ nnn $$$$$44 laqpZ$$If!v h5N55555555 #vN#v#v#v#v#v#v :V $, 555n55n55 n/  /  / / / / / / /  /  / / / / / / /  /  /   aqp($$If!v h5N55555555 #vN#v#v#v#v#v#v :V $, 555n55n55 n/ /  / / / / / / /  / / / / / / / /  /   aqp($$If!v h5N55555555 #vN#v#v#v#v#v#v :V $, 555n55n55 n/ /  / / / / / / /  / / / / / / / /  /   aqp($$If!v h5N55555555 #vN#v#v#v#v#v#v :V $, 555n55n55 n/ /  / / / / / / /  / / / / / / / /  /   aqp($$If!v h5N55555555 #vN#v#v#v#v#v#v :V $, 555n55n55 n/ /  / / / / / / /  / / / / / / / /  /   aqp($$If!v h5N55555555 #vN#v#v#v#v#v#v :V $, 555n55n55 n/ /  / / /  / / /  / / / / /  / /  /  /  aqp(B@B Normal$a$CJ_HmHsHtH T@T =J Heading 2$$d@&a$@CJKHaJtH DAD Default Paragraph FontRi@R  Table Normal4 l4a (k(No List@O@ e Chemistry  tH 6B@6 e9+ Body TextCJtH@P@@ e9+ Body Text 2$a$CJtH8>@"8 e9+Title$a$ 5CJtHH2H J Balloon TextCJOJQJ^JaJ4@B4 MgHeader  p#4 @R4 MgFooter  p#X.UV9:  & . > ? @ I R ] d l w       $ * 1 7 = C D R Y ` f l s y   V 00x000000000x00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00x00P@0L 9: & . > I R ] d l w     * 1 7 C R Y l s y  V A00, =r@00hO@00@00@0 0@0 0@0M@0M@0M@0M@0M@0M@0M@0M@0M@0M@0M@0M@0M@0M@0M@00 9@00 @0M@0M@0M@0M@0 0t 6@00 @0M@0M@0M@0M@00t 6@0"0 d@0M@0M@0M@0M@00t 6@0)0 (@0M@0M@0M@0M@00@00@0M@0M@0M@0M@00@00@00@000R $b*0812UU +0x1111222s2t22222:3;3U  !"#$%&'()U8@0(  B S  ?V[\ajqswx~  BP4B46CQ):=v x   S U ] _ m o w z     $ ) / 1 > ? C ] b g n s y .3lqv x  3333333333.U9  hg .S5TR Z ^a MgE$L\/U ";"Ja#9p#?O%~)+e9+>783:br:}<)=np?D` E($IaKLMPQ:R,'TWR[Ju^"`Qb)|d7ehik3kal,l mk}m$9pNprx\cyfy)T|-J,=J;6}msV <=kHrdTdj68j=e:u#Nlaht`whZ *TCzkO+i0<PiRYY}9k. U  & . > ? @ I R ] d l w       $ * 1 7 = C D R Y ` f l s y   B@{{ PP@P PPP$@PP,@P0Pd@PTUnknownGz Times New Roman5Symbol3& z Arial5& zaTahoma"q &ZfZf)-  !24d  3qH ?eOMECHANISM AND KINETICS OF THE ISOTHERMAL DEGRADATION OF PHB/OMMT NANOCOMPOSITESzokt44baKemijsko-tehnoloski fakultetOh+'0$0D lx    PMECHANISM AND KINETICS OF THE ISOTHERMAL DEGRADATION OF PHB/OMMT NANOCOMPOSITES zokt44ba Normal.dot Kemijsko-tehnoloski fakultet41Microsoft Word 10.0@N%q@-@ea@*1 ՜.+,0T hp  4 Kemijsko-tehnoloski fakultet  PMECHANISM AND KINETICS OF THE ISOTHERMAL DEGRADATION OF PHB/OMMT NANOCOMPOSITES Title  !"#$%&'()*+,./012345789:;<=>?@ABCDEFGHJKLMNOPRSTUVWX[Root Entry F;&1]Data -?1Table6b$WordDocument$XSummaryInformation(IDocumentSummaryInformation8QCompObjj  FMicrosoft Word Document MSWordDocWord.Document.89q