Pregled bibliografske jedinice broj: 389517
Statistical inference for inverse gamma diffusion process
Statistical inference for inverse gamma diffusion process // 4th Croatian Mathematical Congress
Osijek, Hrvatska, 2008. (poster, nije recenziran, sažetak, ostalo)
CROSBI ID: 389517 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Statistical inference for inverse gamma diffusion process
Autori
Leonenko, Nikolai ; Šuvak, Nenad
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, ostalo
Skup
4th Croatian Mathematical Congress
Mjesto i datum
Osijek, Hrvatska, 17.06.2008. - 20.06.2008
Vrsta sudjelovanja
Poster
Vrsta recenzije
Nije recenziran
Ključne riječi
Asymptotic normality; autocorrelation function; Bessel polynomials; consistency; inverse gamma distribution; heavy tailed distribution; mixing coefficient; method of moments; Pearson equation; spectral decomposition; Stein equation.
Sažetak
Stationary diffusion process with invariant marginal inverse gamma distribution is considered. The transition probability is represented as principal solution of corresponding Fokker-Planck equation. Its spectral decomposition in terms of eigenfunctions related to discrete part of the spectrum (i.e. Bessel polynomials) and eigenfunctions related to continuous part of the spectrum is represented. Statistical part includes method of moment estimation of unknown parameters of inverse gamma diffusion. Their consistency and asymptotic normality under mixing properties of corresponding process are analyzed. As conclusion, procedure based on Stein equation for testing inverse gamma distributional assumptions is presented.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
010-0101195-1048 - Modeli za ocjenu rizičnosti poslovanja poduzeća (Šarlija, Nataša, MZOS ) ( CroRIS)
235-2352818-1039 - Statistički aspekti problema procjene u nelinearnim parametarskim modelima (Benšić, Mirta, MZOS ) ( CroRIS)
Ustanove:
Ekonomski fakultet, Osijek,
Sveučilište u Osijeku, Odjel za matematiku
Profili:
Nenad Šuvak
(autor)