Pregled bibliografske jedinice broj: 384084
CSM-SD : Methodology for contrast set mining through subgroup discovery
CSM-SD : Methodology for contrast set mining through subgroup discovery // Journal of biomedical informatics, 42 (2009), 1; 113-122 doi:10.1016/j.jbi.2008.08.007 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 384084 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
CSM-SD : Methodology for contrast set mining through subgroup discovery
Autori
Kralj Novak, Petra ; Lavrač, Nada ; Gamberger, Dragan ; Krstačić, Antonija
Izvornik
Journal of biomedical informatics (1532-0464) 42
(2009), 1;
113-122
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
contrast set mining ; subgroup discovery ; supporting factors ; descriptive rules ; brain ischemia
Sažetak
This paper addresses a data analysis task, known as contrast set mining, whose goal is to find differences between contrasting groups. As a methodological novelty, it is shown that this task can be effectively solved by transforming it to a more common and well-understood subgroup discovery task. The transformation is studied in two learning settings, a one-versus-all and a pairwise contrast set mining setting, uncovering the conditions for each of the two choices. Moreover, the paper shows that the explanatory potential of discovered contrast sets can be improved by offering additional contrast set descriptors, called the supporting factors. The proposed methodology has been applied to uncover distinguishing characteristics of two groups of brain stroke patients, both with rapidly developing loss of brain function due to ischemia:those with ischemia caused by thrombosis and by embolism, respectively.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
098-0982560-2563 - Algoritmi strojnog učenja i njihova primjena (Gamberger, Dragan, MZOS ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb,
Klinika za traumatologiju
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE