Pregled bibliografske jedinice broj: 383004
Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent images for tumour demarcation
Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent images for tumour demarcation // Medical image analysis, 13 (2009), 3; 507-518 doi:10.1016/j.media.2009.02.002 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 383004 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent images for tumour demarcation
Autori
Kopriva, Ivica ; Peršin, Antun
Izvornik
Medical image analysis (1361-8415) 13
(2009), 3;
507-518
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
unsupervised decomposition; Ill-conditioned static linear mixture models; multi-spectral imaging; tumour demarcation; multi-channel medical imaging
Sažetak
Unsupervised decomposition of static linear mixture model (SLMM) with ill-conditioned basis matrix and statistically dependent sources is considered. Such situation arises when low-dimensional low-intensity multi-spectral image of the tumour in the early stage of development is represented by the SLMM, wherein tumour is spectrally similar to the surrounding tissue. The original contribution of this paper is in proposing an algorithm for unsupervised decomposition of low-dimensional multi-spectral image for high-contrast tumour visualisation. It combines nonlinear band generation (NBG) and dependent component analysis (DCA) that itself combines linear pre-processing transform and independent component analysis (ICA). NBG is necessary to improve conditioning of the extended mixing matrix in the SLMM, while DCA is necessary to increase statistical independence between spectrally similar sources. We demonstrate good performance of the method on both computational model and experimental low-intensity red-green-blue fluorescent image of the surface tumour (basal cell carcinoma). We believe that presented method can be of use in other multi-channel medical imaging systems.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
098-0982903-2558 - Analiza višespektralih podataka (Kopriva, Ivica, MZOS ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE