Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 368890

General Three-point Quadrature Formulae


Kovač, Sanja; Pečarić, Josip
General Three-point Quadrature Formulae // Abstracts of the 4th Croatian Mathematical Congress
Osijek, 2008. str. 37-38 (poster, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 368890 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
General Three-point Quadrature Formulae

Autori
Kovač, Sanja ; Pečarić, Josip

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Abstracts of the 4th Croatian Mathematical Congress / - Osijek, 2008, 37-38

Skup
4th Croatian Mathematical Congress

Mjesto i datum
Osijek, Hrvatska, 17.06.2008. - 20.06.2008

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
harmonic polynomials; numerical integration; $w-$harmonic functions; $L_p$ spaces; inequalities; Gaussian quadrature; Simpson's rule; dual Simpson's rule; Maclaurin's rule

Sažetak
General three-point quadrature formulae of the type $$\int_a^b w(t)f(t){; ; d}; ; t=A(x) \left[f\left(x\right)+f(a+b-x)\right]+B(x) f\left(\frac{; ; a+b}; ; {; ; 2}; ; \right)+E(f, x, w), $$ are considered. The sequences of harmonic polynomials and $w-$harmonic functions are applied as a constructive tool for deriving such formulas. Some best possible and sharp error estimates are obtained for the functions whose higher order derivatives belong to $L_p[a, b]$ spaces. Considering the special case $w\equiv 1$, the generalizations of the well-known three-point formulae are obtained. The Simpson's formula ($x=a$), dual Simpson's formula ($x=\frac{; ; 3a+b}; ; {; ; 4}; ; $), dual Simpson's $3/8$ formula ($x=\frac{; ; 5a+b}; ; {; ; 6}; ; $) and Gauss-Legendre two-point ($B(x)=0$) formula ($x=\frac{; ; a+b}; ; {; ; 2}; ; -\frac{; ; b-a}; ; {; ; 2\sqrt{; ; 3}; ; }; ; $) are established as special cases.\\ For the general case of weighted function $w$, some new inequalities regarding quadrature formulae of Gaussian type are obtained.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
117-1170889-0888 - Generalne nejednakosti i primjene (Pečarić, Josip, MZOS ) ( CroRIS)

Ustanove:
Tekstilno-tehnološki fakultet, Zagreb,
Geotehnički fakultet, Varaždin

Profili:

Avatar Url Josip Pečarić (autor)

Avatar Url Sanja Kovač (autor)


Citiraj ovu publikaciju:

Kovač, Sanja; Pečarić, Josip
General Three-point Quadrature Formulae // Abstracts of the 4th Croatian Mathematical Congress
Osijek, 2008. str. 37-38 (poster, međunarodna recenzija, sažetak, znanstveni)
Kovač, S. & Pečarić, J. (2008) General Three-point Quadrature Formulae. U: Abstracts of the 4th Croatian Mathematical Congress.
@article{article, author = {Kova\v{c}, Sanja and Pe\v{c}ari\'{c}, Josip}, year = {2008}, pages = {37-38}, keywords = {harmonic polynomials, numerical integration, $w-$harmonic functions, $L\_p$ spaces, inequalities, Gaussian quadrature, Simpson's rule, dual Simpson's rule, Maclaurin's rule}, title = {General Three-point Quadrature Formulae}, keyword = {harmonic polynomials, numerical integration, $w-$harmonic functions, $L\_p$ spaces, inequalities, Gaussian quadrature, Simpson's rule, dual Simpson's rule, Maclaurin's rule}, publisherplace = {Osijek, Hrvatska} }
@article{article, author = {Kova\v{c}, Sanja and Pe\v{c}ari\'{c}, Josip}, year = {2008}, pages = {37-38}, keywords = {harmonic polynomials, numerical integration, $w-$harmonic functions, $L\_p$ spaces, inequalities, Gaussian quadrature, Simpson's rule, dual Simpson's rule, Maclaurin's rule}, title = {General Three-point Quadrature Formulae}, keyword = {harmonic polynomials, numerical integration, $w-$harmonic functions, $L\_p$ spaces, inequalities, Gaussian quadrature, Simpson's rule, dual Simpson's rule, Maclaurin's rule}, publisherplace = {Osijek, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font