ࡱ> GIF5@G>bjbj22 8zXXG6JJJJJJJ^BBBB4^!+6+2!*$+R).*Jggg*JJ*yyygJJygyy]JJ]* `B}.]*0!+]..]^^JJJJ.J]ry\X**^^Bc^^B12th International Research/Expert Conference Trends in the Development of Machinery and Associated Technology TMT 2008, Istanbul, Turkey, 26-30 August, 2008 A NEW ARTIFICIAL POTENTIAL FOR NOMINAL CONTROL OF REPETITIVE ROBOT MOTION Branko M. Novakovic Dubravko N. Majetic Josip J. Kasac Danko S. Brezak FSB - University of Zagreb Ivana Lucica 5, Zagreb Croatia ABSTRACT In this paper a new artificial potential, suitable for nominal control of the repetitive robot motion, is proposed. Starting with this potential a normalized energy equation has been established. This equation was the source for derivation of a nominal robot velocity as the function of the initial and final positions, as well as the limited maximal nominal velocity of the robot motion. For derivation of nominal robot acceleration, as the function of the same parameters, the artificial potential relation has been employed. Both nominal velocity and acceleration equations satisfy the condition of the repetitive motion: boundary velocities are equal to zero and boundary accelerations are positive on the first side and negative on the second one. The nominal transient position relation is twice continuously differentiable resulting in the mentioned nominal velocity and acceleration equations. The obtained nominal velocity and acceleration relations are very simple for calculation and can be applied to the real time nominal control of repetitive robot motion. Keywords: artificial potential, nominal velocity and acceleration, nominal repetitive robot control. 1. INTRODUCTION There exist a lot of nominal robot control algorithms mostly given as nominal velocity profiles of the robot motion. The main problem of the existing nominal robot control algorithms is in their real-time realization. Because of complex nominal velocity profiles and complex interactions in the robot structure, the related control of the fast robots can not be calculated in the real-time. Especially, in the case of the repetitive nominal control both nominal velocity and acceleration equations must satisfy the main condition of the repetitive motion: boundary velocities should be equal to zero and boundary accelerations should be positive on the first side and negative on the second one. An important subject in control of mechanical systems is tracking repetitive nominal signals and attenuating periodic disturbances. Many tracking systems, such as computer disk drivers, rotation machine tools and assembly robots, have to deal with repetitive nominal signals and disturbances. Generally, repetitive controllers can be classified as being either internal model based or external model based [1]. The control algorithms with internal models are linear and have repetitive signal generators [2, 3]. On the other side, the control algorithms with the external models are based on the feedforward compensation of the inverse dynamics and their disturbance model is placed outside the basic feedback loop [4, 5]. The main advantage of the control algorithms with internal models is that they are linear, making the analysis and implementation easier. The main disadvantage of that control algorithms is that the stability is almost entirely governed by the feedback loop of the repetitive compensators. In the case of the external model approach there is no significant influence on the stability margin of the control system. Meanwhile, the analysis and implementation of the control algorithms are more complex by the external model approach. In the reference [6] a new class of passive internal model based repetitive controllers for robot manipulators is proposed. In this approach the passive interconnection of the controller with nonlinear mechanical system has no influence to the stability margin like in exact feed-forward compensation of robot dynamics [7, 8]. An interesting approach to synthesis of the nominal control of the repetitive robot motion has been presented in [9]. This approach is based on the analogy to the basic equations of the universe motion [10]. The main disadvantage in that approach is the condition that the generalized (joint) coordinates should be different from zero. Of course, this limitation can always be avoided by using the related coordinate transformation, but it slow down the calculation of the nominal control variables. In order to find out a simple and fast nominal control algorithm in this paper a new artificial potential, suitable for nominal control of the repetitive robot motion, is proposed. Starting with this potential a normalized energy equation has been established. This equation was the source for derivation of a nominal robot velocity as the function of the initial and final positions, as well as the limited maximal nominal velocity of the robot motion. For derivation of nominal robot acceleration, as the function of the same parameters, the artificial potential relation has been employed. Both nominal velocity and acceleration equations satisfy the condition of the repetitive motion: boundary velocities are equal to zero and boundary accelerations are positive on the first side and negative on the second one. The obtained nominal velocity and acceleration relations are very simple for calculation and can be applied to the real time nominal control of repetitive robot motion. This paper is organized as follows. The synthesis procedure of the nominal control of the repetitive robot motion, based on an artificial potential, is presented in the second section. Some comments and conclusions are emphasized by the third section, while reference list is given by the forth (last) section. 2. SYNTHESIS OF NOMINAL CONTROL OF REPETITIVE ROBOT MOTION Following the idea to employ an artificial potential for design a nominal control of repetitive robot motion one can establish the related normalized energy equation:  EMBED Equation.2  (1) where  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4  are generalized (joint) coordinate and velocity of the i-th robot link,  EMBED Equation.DSMT4 is the limited maximal nominal velocity, Ki and ki are related constants and n is the number of the robot links. The first part on the left side of the equation (1) represents the normalized kinetic energy, the second one is the normalized potential energy, while the right side of the equation (1) represents the normalized total (kinetic + potential) mechanical energy. An artificial scalar potential Vpi of an artificial potential field in the equation (1) is described by the following relation:  EMBED Equation.2  (2) The normalized energy equation (1) can be transformed into the new relation:  EMBED Equation.2  (3) Consequently, the related velocity equation can be derived from (3) in the following form:  EMBED Equation.2  (4) The notation (+) is valid for motion in a positive direction, while the notation (-) is related to the negative one. The acceleration equation can be derived directly from the artificial scalar potential (2):  EMBED Equation.3  (5) The velocity equation (4) has two zeros, where the first one is at the initial position qoi and the second one is at the final position qei :  EMBED Equation.2  (6) From the relations (6) one can calculate the parameters ki and Ki as the functions of the initial and final positions:  EMBED Equation.2  (7) Substituting parameters ki and Ki from (7) into the relation (4) one obtains the velocity equation as the function of the initial and final positions:  EMBED Equation.2  (8) On the other side, the substitution of the parameters ki and Ki from (7) into the relation (5) gives the acceleration equation also as the function of the initial and final positions:  EMBED Equation.3  (9) From the relation (9) we can see that the zero acceleration is occurred at the position qci :  EMBED Equation.3  (10) For qi < qci the acceleration is positive and for qi > qci the acceleration is negative. Including qi = qci into the velocity equation (8) one obtains the maximal velocity at that position:  EMBED Equation.3  (11) Thus, the maximal velocity is always less or equal to the limited maximal nominal velocity vmi. At the initial and final positions we have the following values of the velocities and accelerations:  EMBED Equation.3  (12) The relations (12) show that both nominal velocities and accelerations satisfy the condition of the repetitive motion: boundary velocities are equal to zero and boundary accelerations are positive on the first side and negative on the second one. Now, one can established the following vector relations:  EMBED Equation.3 (13) where  EMBED Equation.DSMT4  is a real n-vector of generalized (joint) coordinates,  EMBED Equation.DSMT4 and EMBED Equation.DSMT4 are the related generalized velocity and acceleration vectors and U(t) is a real n-vector of the nominal robot control. Following the relations (8) to (13) one can implement the nominal control algorithm for control of the nominal repetitive robot motion:  EMBED Equation.3  (14) In the relation (14), E( EMBED Equation.DSMT4 ) is a real (n x n)-inertial matrix and F( EMBED Equation.DSMT4 ) is a real n-vector of centrifugal, Coriolis and gravity forces. Both E( EMBED Equation.DSMT4 ) and F( EMBED Equation.DSMT4 ) include the actuator parameters and related constant connections between manipulator and actuators. Thus, the nominal control of the repetitive robot motion can be calculated in a real-time by employing very simple relations (8) to (13) and the equation (14). 3. CONCLUSION The synthesis procedure of the new nominal control of the repetitive robot motion, based on an artificial potential, is presented and the related normalized energy equation has been established. This equation was the source for derivation of a nominal robot velocity relation as the function of the initial and final positions, as well as the limited maximal nominal velocity of the robot motion. The nominal robot acceleration equation, as the function of the same parameters, has been derived directly from the mentioned artificial potential. It is shown that both nominal velocity and acceleration equations satisfy the condition of the repetitive motion: boundary velocities are equal to zero and boundary accelerations are positive on the first side and negative on the second one. The obtained nominal velocity and acceleration relations are very simple for calculation and can be applied to the real time nominal control of repetitive robot motion. 4. REFERENCES [1] Kempf C., Messner W., Tomizuka M., Horowitz R.: Comparison of Four Discrete-Time Repetitive Control Algorithms, IEEE Control Systems Magazine, p. 4854, Dec. 1993., [2] Hara S., Omata T., Nakano M.: Repetitive Control System: A New Type Servo System for Periodic Exogenous Signals, IEEE Transactions on Automatic Control, vol. 33, no. 7, pp. 659 - 668, 1988., (3] Tomizuka M., Tsao T.C., Chew K.K.: Discrete-Time Domain Analysis and Synthesis of Repetitive Controllers, ASME Journal of Dynamic Systems, Meas. and Control, vol. 111, no. 3, pp. 353 - 358, 1989., [4] Sadegh N., Guglielmo K.: A New Repetitive Controller for Mechanical Manipulators, Journal of Robotic Systems, vol. 8, no. 4, pp. 507 - 529, 1991., [5] Messner W., Horowitz R., Kao W.W., Boals M.: A New Adaptive Learning Rule, IEEE Transactions on Automatic Control, vol. 36, no. 2, pp. 188 - 197, 1991., [6] Kasac J. , Novakovic B., Majetic D., Brezak D.: Passive Internal Model Based Repetitive Control of Robot Manipulators, Proc. of the 2006 IEEE International Conference on Control Applications, Munich, Germany, October 4 - 6, 2006., [7] Santibanez V., Kelly R.: PD Control with Feedforward Compensation for Robot Manipulators: Analysis and Experimentation, Robotica, vol. 19, p. 1119, 2001., [8] Kelly R., Salgado R.: PD Control with Computed Feedforward of Robot Manipulators: A Design Procedure, IEEE Transactions on Robotics and Automation, vol. 10, no. 4, pp. 566 - 571, August 1994. [9] Novakovic B., Majetic D., Kasac J., Brezak D.: From the Nature to the Control Theory: Nominal Control of the Robot Motion Based on the Universe Motion, Annals of DAAAM for 2004 & Proceedings of the 15th International DAAAM Symposium, pp. 319 - 320, Vienna, Austria, 2004., [10]Novakovic B., Novakovic D., Novakovic A.: A New Dynamic Model of the Universe Motion, International Journal of Computing Anticipatory Systems, vol. 16, pp. 147 - 162., Publ. by CHAOS, Liege, Belgium, 2004. .q   & ' . 5 6 ; < = E F Y ` a q vjc_[_[hS7jh[ hl55\h4"5h4"55CJaJhl55CJaJhX(H5CJaJh4"55CJaJh85CJaJ h4"55\ h85\ hX(H5\ h5\h4"5h4"5CJaJ hCJ hhCJh5;CJ h>* h|-&>*hh5CJ\h5CJH*\h|-&5CJ\#.q ' 6 F a x  % @0@ Pp#$`')0*` )]gd4"5 & @0 &`@ ')]gd4"5gd4"5$a$gdX(H]gdX(H$a$gd4"5]gdh &dP$a$G> 2 !"`w$a$gdwI ^` $ 0*$a$gd@ -` & 0@ P@p#$`'')0*gdPd -` & 0@ P@p#$`'')0*$ & @0@ P@p#$`'')0*a$xgd2*] O " ) [  2hv6.y|N8M\g}yuyuyh[V"hO[hH7hh(h>Sh^hT#hy6hPdhhwhhh4h\h" hh*OhDhR hh h5CJ h6] h6]h56\]hh2*h)nhkhx<h[-  Ovwe %N~!"/1<Q_`|  +,?޾}ufjhwIhwICJUaJhKCJaJhLmbCJaJh&&>CJaJhwIhwICJaJh#?CJaJhy CJaJ h|ehh0h|e h|eh|eh|e@CJh@>@CJh0@CJh@@CJh@CJ h[V"6haha6 ha6h\h%$?@ABTX]`afghļĩubMu=jhVCJUaJmH sH )jhBehBeCJEHUaJmH sH %jh4K hBeUVmHnHsHtHhBeCJaJmH sH jhBeCJUaJmH sH hZ>CJaJmH sH hVCJaJmH sH hwIhwICJaJhv5CJaJhLmbCJaJhKCJaJjhwIhwICJUaJ!jh&&>h2mCJEHUaJ%j5K h2mUVmHnHsHtHa!g""##$%%h&&H''V())E*$a$gdIU ^`gdNa ^`gdwI ^`gdM$a$gdg $xxa$gdeo$a$gd@ `S^`gd&&> $xxa$gd_      % . 0 1 7 8 N u v ǻk_S_SFFSh2mCJH*aJmH sH hL/CJaJmH sH h.]CJaJmH sH )j h2mh2mCJEHUaJmH sH %j 6K h2mUVmHnHsHtHh2mCJaJmH sH jh2mCJUaJmH sH hdCJaJmH sH hZ>CJaJmH sH jhVCJUaJmH sH )j4hVhVCJEHUaJmH sH %j4K hVUVmHnHsHtHv w ! !!;!g!r!z!!!!!!!!!"!"&"'"(";"<"ĸĒwo`M%j?K hnTUVmHnHsHtHjhwIhu,CJUaJhCJaJhv5CJaJhu,CJaJhwIhu,CJaJhwICJaJmH sH hnTCJH*aJmH sH hu,CJH*aJmH sH hu,CJaJmH sH hvoCJaJmH sH h(CJaJmH sH hL/CJaJmH sH hZ>CJaJmH sH hVCJaJmH sH <"=">"T"a"c"g"""""""""""###$#########$$ $ $׿ǩvnǿ_S_S_S_ǩh7GCJaJmH sH hwIhwICJaJmH sH h@CJaJ!jhxhxCJEHUaJ%jhnTCJEHUaJ $ $!$"$#$:$>$@$$$$$%% %%%%%%%%%%%%%%%%%%ºm\ShgCJ\aJ!j+hwIh1CJEHUaJ%jEK h1UVmHnHsHtHjhwIh1CJUaJhwIh1CJaJh1CJaJhwCJaJhE&CJaJhCJaJhgCJaJjhwIhwICJUaJ!jthwIhE&CJEHUaJ%j1@K hE&UVmHnHsHtHhwIhwICJaJ%%&!&1&3&4&5&9&:&S&a&c&f&g&h&&&&&&&&&&&&&&&&&󶫣yh`XPX`h2CJaJhs9 CJaJh?gBCJaJ!jhwIh2CJEHUaJ%j~K h2UVmHnHsHtHjhwIhwICJUaJhYkCJaJhMCJaJhwIhwICJaJhCihwI5CJaJhGeCJH*\aJh2CJH*\aJhGeCJ\aJhgCJ\aJh&CJ\aJhwIhwICJ\aJ&&&&& ' '''!'"'H'd'j'k'm'n'o'v'w''''''''''''''ڶ|kcWh qCJaJmH sH h qCJaJ!j"hR-hR-CJEHUaJ%jB{K hR-UVmHnHsHtHjhwIhR-CJUaJh2CJaJhMCJaJhR-CJaJhwIhR-CJaJhMCJaJmH sH h\CJH*aJmH sH h\CJaJmH sH hwIhwICJaJmH sH hwIhwICJaJ ''''V(k(s(u(v(((((((()A)M)N)T)U))))))))**۱Әېwwldl\lMljhwIhNa CJUaJhkCJaJhMCJaJhwIhNa CJaJhNa CJH*aJmH sH hNa CJaJmH sH hNa CJaJh!;CJaJ!j&h qh qCJEHUaJ%jK h qUVmHnHsHtHjhwIh qCJUaJh qCJaJhwIh qCJaJh qCJaJmH sH h qCJH*aJmH sH ****&*0*A*C*E*f**************ļvi^^V^G^jhwIh$ `@ ')T^T`a$gdd T^T`gdp$ `@ ')T^T`a$gdp$ `@ ')T^T`a$gd,p u=y=>>>>G>h hT%hrhd6 00&PP. A!"#$% Dd  b  c $A? ?3"`?2M0"@^D `!M0"@^ !h(38xڵVMLA~3-ݦ`ҒH M<" ?QOj $O=0r &= x1 %X/ovv Ro{,bd2!٥lPx[PI>Yu6}MKm+F B9P"'5l/a;e(D?MlEvwbl)o~}xH, eJbF6#쁲Yk<>6~]QK)~0 ,;)ʤmS~wsd w$x)&//*D& XRqUJFcSJ:U#DRcnb)k+OGzb34@TəR~58,UeCC_Gjz cJ7zU ʔ}&ϊ^Z{}>KNGEM4УӰF63'Sa?${J 7 &WV>ZlAzq5..ǃ->b||RR{{J$Zv'ծ@ggu_=W}> _CLW+t> 3Id{N.y&<Cr@0D]bb:r6hHLL}w6TC!@:#T#V"2 Vew`>v\eMH-7ʠ>Qك۽=`L]E(meD>Y w%YPW̒YܞTܭ$ySF pZ}!fО8}e/˅D,9 toXY=7 v$cƍ=a_lt-3ϗĒj\B:QhUmz1k#zUt8Qg̩Χm N#XesRQxJw2M5!9eOzB{ξ)GvhfPZ.46C؅f~Dd |0  # A284:l O+0x `! 4:l O+0`H0xڝROA,Ƕfۂ!*]p,K%^L" lRhKތI=z \`ыcr2.T7# ZC'CDQh\T\Ě8aF~c` 93',50*S..ThD~I ^n\qJ7?yeCya3'¼.d/oi][j{֭ق9WDHqo~Dla~إҒS+nrkHDzϗ~yRteUD&O5hv.k2TZ*2ii[gbYQ0_\.fF@JA٩3G=37 jz|ju;7}#{a=c@[ƅa]9K?~BDd 0  # A2*vbvqb4 `!vbvqb@CxڝRn@}3n(M-9iZ!6H{4KJDRh0Rܠ$4D*n^.ApCB(q@] [훷3o08MSn[8xAWXXE0F#Gh'itZfWxUoS}&=1J0 V0w#~Wʜ]hn&5'^曔x|5FWQYiϟՠ85W( jopt6~}4ݠravhуnGjg0Em|󱄳νkY%X.zr%oxJVMvZBXnr. ]$z(d@YT}q/Jh'S;\Ԋ_^ˤEx {1_nAԕJppH'z~W5?Ci6Dd | b  c $A? ?3"`?2?[%@B>ǜ%\ `!T?[%@B>ǜ% `(8"xڵUOA3 tY4FD%Q!)541CJ!b#jH !@<$^ r`1 Eꛝ݂@c {f3l$쒰QBLDh>75rjS(HUNءl0Es*9_nR ۑM@?1 U"zUiS;,T#E~X0Ş(8ڳ/P-cSCmV=e0jT+UE~Z<6^ۡQWX^N%bɢs MC.W4ձq$u淎g{(VǦ=:wu_u( [ZӦ^R"ȕ57j t5zI_'PFa>{gAf]4 #\G/n߈Wvv.DgqG%==Mv33W̜R(5ЧX'8pr/.(\Lz\#9`D?lޢ'rn  !"#$%&'()*+,-./0123456789:;<=?@ABCDEHP`KLMNOQSRTUWVXYZ[b\]^_avcdelfghijkmsnopqrtuwyxz{|}~Root Entry F eJData >YWordDocument8zObjectPool/` e_1268659674F``Ole PIC LMETA h   !"#$%&'()*+,.123456789<?@ADGHILOPQRUWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~L.2 .2 =  .1  @ *&`* & MathType NSymbol-2 [NSymbol-2 @]Symbol-2 [Symbol-2 Y]-qNSymbol-2 [NSymbol-2 ](Symbol-2 ((Symbol-2 )Symbol-2 ][Symbol-2 ]?$)Times New Roman- 2 i4deti 2 isini 2 iy ,` 2 i5deti 2 2sini 2 i,` 2 G:sini 2 GP,` 2 RJ&sini 2 %&sini 2 G!*.`Times New RomanC- 2 ig 2 i3r 2 ig 2 r 2 G4T 2 G!g 2 Gv 2 G v 2 GC r 2 G T 2 Gg 2 Gv 2 G7!v 2 x$rTimes New Roman- 2 jijII 2 ijII 2 rh 2 ijII 2 rh 2 ijIISymbol- 2 i= 2 iT- 2 i+= 2 tr- 2 G= 2 G- 2 G+ 2 G! + 2 G+ 2 G= 2 G- 2 G + 2 G#+ 2 R(%+Symbol- 2  - 2 x-Times New Roman- 2 4 2  2 2 I4 2  2 2 2 2  2 2 2 2 2 2  2 2 "2 2 %(2 2 <%2 2 (2Times New RomanC- 2 tE1 2 G+1 2 R;$1Symbol- 2 i f 2 f 2 Gf 2 R(f 2 (f & "System-v 2 o r 2 or FMathType 5.0 Equation MathType EFEquation.DSMT49qCompObj -iObjInfo /Equation Native 0}_1268659304 F``ka \DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A   q i2 2++ v m i 2 21"-K i q i () 2 == v m i 2 k i2 2,i==1,2,...,n, FMathType 5.0 Equation MathType EFEquation.DSMT49qk DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_Ole :CompObj ;iObjInfo=Equation Native >APAPAE%B_AC_A %!AHA_D_E_E_A  q i FMathType 5.0 Equation MathType EFEquation.DSMT49qk DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G__1268659204F``Ole BCompObjCiObjInfoEEquation Native F_1268659725 F``Ole JCompObjKiAPAPAE%B_AC_A %!AHA_D_E_E_A  q i FMathType 5.0 Equation MathType EFEquation.DSMT49qk DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_ObjInfoMEquation Native N_1268662153!(F``Ole SAPAPAE%B_AC_A %!AHA_D_E_E_A  v m i L.2 .2 =  .1  @ *&`* &PIC TLMETA Vh CompObjiObjInfo  MathType NSymbol-2 [NSymbol-2 @]Symbol-2 [Symbol-2 Y]-qNSymbol-2 [NSymbol-2 ](Symbol-2 ((Symbol-2 )Symbol-2 ][Symbol-2 ]?$)Times New Roman- 2 i4deti 2 isini 2 iy ,` 2 i5deti 2 2sini 2 i,` 2 G:sini 2 GP,` 2 RJ&sini 2 %&sini 2 G!*.`Times New RomanC- 2 ig 2 i3r 2 ig 2 r 2 G4T 2 G!g 2 Gv 2 G v 2 GC r 2 G T 2 Gg 2 Gv 2 G7!v 2 x$rTimes New Roman- 2 jijII 2 ijII 2 rh 2 ijII 2 rh 2 ijIISymbol- 2 i= 2 iT- 2 i+= 2 tr- 2 G= 2 G- 2 G+ 2 G! + 2 G+ 2 G= 2 G- 2 G + 2 G#+ 2 R(%+Symbol- 2  - 2 x-Times New Roman- 2 4 2  2 2 I4 2  2 2 2 2  2 2 2 2 2 2  2 2 "2 2 %(2 2 <%2 2 (2Times New RomanC- 2 tE1 2 G+1 2 R;$1Symbol- 2 i f 2 f 2 Gf 2 R(f 2 (f & "System-v 2 o r 2 or FMathType 5.0 Equation MathType EFEquation.DSMT49qk4\DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  V p i  == v m i 2Equation Native _1268661450#F``Ole PIC "%L 21"-K i q i () 2 ,i==1,2,...,n.L.2 .2 =  .1  @ *&`* &META h CompObj$&iObjInfo'Equation Native u MathType NSymbol-2 [NSymbol-2 @]Symbol-2 [Symbol-2 Y]-qNSymbol-2 [NSymbol-2 ](Symbol-2 ((Symbol-2 )Symbol-2 ][Symbol-2 ]?$)Times New Roman- 2 i4deti 2 isini 2 iy ,` 2 i5deti 2 2sini 2 i,` 2 G:sini 2 GP,` 2 RJ&sini 2 %&sini 2 G!*.`Times New RomanC- 2 ig 2 i3r 2 ig 2 r 2 G4T 2 G!g 2 Gv 2 G v 2 GC r 2 G T 2 Gg 2 Gv 2 G7!v 2 x$rTimes New Roman- 2 jijII 2 ijII 2 rh 2 ijII 2 rh 2 ijIISymbol- 2 i= 2 iT- 2 i+= 2 tr- 2 G= 2 G- 2 G+ 2 G! + 2 G+ 2 G= 2 G- 2 G + 2 G#+ 2 R(%+Symbol- 2  - 2 x-Times New Roman- 2 4 2  2 2 I4 2  2 2 2 2  2 2 2 2 2 2  2 2 "2 2 %(2 2 <%2 2 (2Times New RomanC- 2 tE1 2 G+1 2 R;$1Symbol- 2 i f 2 f 2 Gf 2 R(f 2 (f & "System-v 2 o r 2 or FMathType 5.0 Equation MathType EFEquation.DSMT49qkY4\DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A   q i2 2"-K i q i v m i 2 1"- K i q i 2()== v m i 2 2k i2 "-1().L.2 _1268662321*F``Ole PIC ),LMETA h .2 =  .1  @ *&`* & MathType NSymbol-2 [NSymbol-2 @]Symbol-2 [Symbol-2 Y]-qNSymbol-2 [NSymbol-2 ](Symbol-2 ((Symbol-2 )Symbol-2 ][Symbol-2 ]?$)Times New Roman- 2 i4deti 2 isini 2 iy ,` 2 i5deti 2 2sini 2 i,` 2 G:sini 2 GP,` 2 RJ&sini 2 %&sini 2 G!*.`Times New RomanC- 2 ig 2 i3r 2 ig 2 r 2 G4T 2 G!g 2 Gv 2 G v 2 GC r 2 G T 2 Gg 2 Gv 2 G7!v 2 x$rTimes New Roman- 2 jijII 2 ijII 2 rh 2 ijII 2 rh 2 ijIISymbol- 2 i= 2 iT- 2 i+= 2 tr- 2 G= 2 G- 2 G+ 2 G! + 2 G+ 2 G= 2 G- 2 G + 2 G#+ 2 R(%+Symbol- 2  - 2 x-Times New Roman- 2 4 2  2 2 I4 2  2 2 2 2  2 2 2 2 2 2  2 2 "2 2 %(2 2 <%2 2 (2Times New RomanC- 2 tE1 2 G+1 2 R;$1Symbol- 2 i f 2 f 2 Gf 2 R(f 2 (f & "System-v 2 o r 2 or FMathType 5.0 Equation MathType EFEquation.DSMT49qka4\DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_CompObj+-iObjInfo.Equation Native }_1268663767I1F``A  q i ==2K i q i v m i 2 1"- K i q i 2()++k i2 "-1()v m i 2 [] 1/2 .Ole CompObj02iObjInfo3Equation Native X     !"#$%&'()*+,-./0123456789;>?@ABCDEFIKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrsuxyz{|}~ FMathType 5.0 Equation MathType EFEquation.DSMT49qk<4\DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  q i =="- "V p i  "q i ,!q i ==K i v m i 2 1"-K i q i ().L.2 _1268743915;B6F``Ole  PIC 58LMETA h .2 =  .1  @ *&`* & MathType NSymbol-2 [NSymbol-2 @]Symbol-2 [Symbol-2 Y]-qNSymbol-2 [NSymbol-2 ](Symbol-2 ((Symbol-2 )Symbol-2 ][Symbol-2 ]?$)Times New Roman- 2 i4deti 2 isini 2 iy ,` 2 i5deti 2 2sini 2 i,` 2 G:sini 2 GP,` 2 RJ&sini 2 %&sini 2 G!*.`Times New RomanC- 2 ig 2 i3r 2 ig 2 r 2 G4T 2 G!g 2 Gv 2 G v 2 GC r 2 G T 2 Gg 2 Gv 2 G7!v 2 x$rTimes New Roman- 2 jijII 2 ijII 2 rh 2 ijII 2 rh 2 ijIISymbol- 2 i= 2 iT- 2 i+= 2 tr- 2 G= 2 G- 2 G+ 2 G! + 2 G+ 2 G= 2 G- 2 G + 2 G#+ 2 R(%+Symbol- 2  - 2 x-Times New Roman- 2 4 2  2 2 I4 2  2 2 2 2  2 2 2 2 2 2  2 2 "2 2 %(2 2 <%2 2 (2Times New RomanC- 2 tE1 2 G+1 2 R;$1Symbol- 2 i f 2 f 2 Gf 2 R(f 2 (f & "System-v 2 o r 2 or FMathType 5.0 Equation MathType EFEquation.DSMT49qE<\DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_CompObj79:iObjInfo:<Equation Native =a_1268742978=F``A  q o i  ==q i min  == 1"-k i K i ,q e i  ==q i max  == 1++k i K i .Ole GPIC <?HLMETA Jh CompObj>@tiL.2 .2 =  .1  @ *&`* & MathType NSymbol-2 [NSymbol-2 @]Symbol-2 [Symbol-2 Y]-qNSymbol-2 [NSymbol-2 ](Symbol-2 ((Symbol-2 )Symbol-2 ][Symbol-2 ]?$)Times New Roman- 2 i4deti 2 isini 2 iy ,` 2 i5deti 2 2sini 2 i,` 2 G:sini 2 GP,` 2 RJ&sini 2 %&sini 2 G!*.`Times New RomanC- 2 ig 2 i3r 2 ig 2 r 2 G4T 2 G!g 2 Gv 2 G v 2 GC r 2 G T 2 Gg 2 Gv 2 G7!v 2 x$rTimes New Roman- 2 jijII 2 ijII 2 rh 2 ijII 2 rh 2 ijIISymbol- 2 i= 2 iT- 2 i+= 2 tr- 2 G= 2 G- 2 G+ 2 G! + 2 G+ 2 G= 2 G- 2 G + 2 G#+ 2 R(%+Symbol- 2  - 2 x-Times New Roman- 2 4 2  2 2 I4 2  2 2 2 2  2 2 2 2 2 2  2 2 "2 2 %(2 2 <%2 2 (2Times New RomanC- 2 tE1 2 G+1 2 R;$1Symbol- 2 i f 2 f 2 Gf 2 R(f 2 (f & "System-v 2 o r 2 or FMathType 5.0 Equation MathType EFEquation.DSMT49qh \DSMT5WinAllBasicCodePagesObjInfoAvEquation Native w_1268744587DF``Ole Times New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  k i == q e i  "-q o i  q o i  ++q e i  ,K i == 2q o i  ++q e i  .L.2 .2 =  .1  @ *&`* & MathType NSymbol-2 PIC CFLMETA h CompObjEGiObjInfoH[NSymbol-2 @]Symbol-2 [Symbol-2 Y]-qNSymbol-2 [NSymbol-2 ](Symbol-2 ((Symbol-2 )Symbol-2 ][Symbol-2 ]?$)Times New Roman- 2 i4deti 2 isini 2 iy ,` 2 i5deti 2 2sini 2 i,` 2 G:sini 2 GP,` 2 RJ&sini 2 %&sini 2 G!*.`Times New RomanC- 2 ig 2 i3r 2 ig 2 r 2 G4T 2 G!g 2 Gv 2 G v 2 GC r 2 G T 2 Gg 2 Gv 2 G7!v 2 x$rTimes New Roman- 2 jijII 2 ijII 2 rh 2 ijII 2 rh 2 ijIISymbol- 2 i= 2 iT- 2 i+= 2 tr- 2 G= 2 G- 2 G+ 2 G! + 2 G+ 2 G= 2 G- 2 G + 2 G#+ 2 R(%+Symbol- 2  - 2 x-Times New Roman- 2 4 2  2 2 I4 2  2 2 2 2  2 2 2 2 2 2  2 2 "2 2 %(2 2 <%2 2 (2Times New RomanC- 2 tE1 2 G+1 2 R;$1Symbol- 2 i f 2 f 2 Gf 2 R(f 2 (f & "System-v 2 o r 2 or FMathType 5.0 Equation MathType EFEquation.DSMT49q<\DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  q i == 2v m i  q o iEquation Native _12687462944]KF``Ole CompObjJLi  ++q e i  q o i  ++q e i  ()q i "-q i2 "-q o i  q e i  [] 1/2 . FMathType 5.0 Equation MathType EFEquation.DSMT49qe<\DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  q i == 2v m i 2 q o i  ++ObjInfoMEquation Native _1268747641PF``Ole q e i  1"- 2q i q o i  ++q e i  (). FMathType 5.0 Equation MathType EFEquation.DSMT49qCompObjOQiObjInfoREquation Native _1268749742NXUF`` \DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  q i ==0,!q i ==q c i  == q o i  ++q e i  2. FMathType 5.0 Equation MathType EFEquation.DSMT49qw<\DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_Ole CompObjTViObjInfoWEquation Native A  q i ==q c i  !q i ==q i max  ==k i v m i  == q e i  "-q o i  q o i  ++q e i  v m i  ,q e i  "-q o i  ()d"q o i  ++q e i  ()!q i max  d"v m i  ._1268813019ZF``Ole CompObjY[iObjInfo\ FMathType 5.0 Equation MathType EFEquation.DSMT49qs. \DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  q i ==Equation Native J_1268815126Sq_F``Ole CompObj^`i      !"#&)*+.12369:;>ABCDEHKLMPSTUX[\]`cdeghijklnopqsq o i  !q i ==q o i  ==0,q i ==q e i  !q i ==q e i  ==0,q i ==q o i  !q i ==q o i  ==K i k i v m i 2 == 2q e i  "-q o i  ()v m i 2 q o i  ++q e i  () 2 ,q i ==q e i  !q i ==q e i  =="-K i k i v m i 2 == "-2q e i  "-q o i  ()v m i 2 q o i  ++q e i  () 2 . FMathType 5.0 Equation MathType EFEquation.DSMT49qs*4\DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_ObjInfoaEquation Native F_1268815670dF``Ole $APAPAE%B_AC_A %!AHA_D_E_E_A  q==q 1 q 2 ...q n [] T ,q==q 1 q 2 ...q n [] T ,q==q 1 q 2 ...q n [] T ,U==u 1 u 2 ...u n [] T , FMathType 5.0 Equation MathType EFEquation.DSMT49qCompObjce%iObjInfof'Equation Native (_1268815492iF``s DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  q FMathType 5.0 Equation MathType EFEquation.DSMT49qOle ,CompObjhj-iObjInfok/Equation Native 0s DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  q FMathType 5.0 Equation MathType EFEquation.DSMT49q_1268815573gbnF``Ole 4CompObjmo5iObjInfop7Equation Native 8_1268816413lsF``Ole <CompObjrt=is DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  q FMathType 5.0 Equation MathType EFEquation.DSMT49qObjInfou?Equation Native @M_1268817577xF``Ole Fs14\DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  U(t)==E(q)q++F(q,q). FMathType 5.0 Equation MathTyCompObjwyGiObjInfozIEquation Native J_1268816743}F``pe EFEquation.DSMT49qs DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  q FMathType 5.0 Equation MathTyOle NCompObj|~OiObjInfoQEquation Native Rpe EFEquation.DSMT49qs4DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  q,q FMathType 5.0 Equation MathTy_1268817565{vF``Ole VCompObjWiObjInfoYpe EFEquation.DSMT49qs DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  q FMathType 5.0 Equation MathTyEquation Native Z_1268816682F``Ole ^CompObj_ipe EFEquation.DSMT49qs4DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!O)!!/G_APAPAE%B_AC_A %!AHA_D_E_E_A  q,qOh+'0  ObjInfoaEquation Native b1Table.SummaryInformation(fINF΃}hsEg]!@`7C*3n cxFah88 oz1g3) D,㮚zthݚ?]tUmV3t¨i|/Ont0Ѩƒ܄g$;I҅i]JFJkڳx0Q#9e .Dd [b  c $A? ?3"`?2rw&KR~4+̜\4 `!rw&KR~4+̜\4 `,SxڵOABYZʇQPZ aI@`cj (P@'&FI=qPI jB7m l/o޼{ofv@;.p^(%ĔM$TG|jXQRu* $Pcg*7V2Bݱ0w'#8XG %t6R1JKUXQ+/t}e\1#ٝ2 6W-EzGpdԫuë_|z#_2!JHYγ&K̾)_ZHJ 'aIggtdxsz$[jlJ?ogLy$jx;y(fsDwȔGqVqC|S(sEYf+٦0>z %{-f+$褈 3;+B7 VsgRa|+"]`WleIxwD')9GM B.(@K&ZaZ(Xv7QN,}|MO\+=|*l#@LY=mW&B KTa̿aj};{zRH[ݍX3hhh\2 ǡH:WE̬i2ryL N( ݘy ;7*;R66w4قJϓ u^TٮP/l %I\7JtWXÆQB* DE*\wWSRTFN1zt2]o쀷AMkxSMz25ۉ3`GTB*&VǗ]Otje>SgBiUWl|"kYyomge?Q Dd Tpb  c $A? ?3"`?2@\PϬȣ>#b `!@\PϬȣ>#bL "04xڭMLAV(A!*ʖ#!@h4^XbFXF `$ *357ƃ1ĿZ 1mw}MwfA:&H~d8c x,c_,GwwRj쫯v"ƾc7a>Ԫm!P/t[>#,>~۶|}}a۵@ssE][ٺ/\:n xDȕGڴp#YEz!ͷpoWZ[-t V+ T4vUm"O:DumPi}SU~€@_菃tC88gQ\Kp#SR_98#!~r*0ݔNT/5Gǰ`f,) P}bA.hTψ4WEПivZ") uD%6RN: rD%x2]X̷ c t(ygww#惓z*9қ!߻&sDd 4h  s *A? ?3"`?2ۜv&w0]2o `!ۜv&w0]2 ! h(3pYxڵVMLA~3K( F $" 'lM-Zu "x%!ĀFǞHу'Db 7ݥ67{۝%``* &I IY&IŪ&E),j~*G< %6Dю(|)/ nbA1"M]V[&MR-*A/]X7)O+ X7`]O<%* 0\m8,{l s Gq0RRpɡ`TjHá@UC--{whwtlpPsJ{c Vz'J89SW:l:G,d9h.%huUdET9tF cCG"UH5|35eKD`4Nz}I}],f坮SDZ:|.9-۰[;ly;C+ˎmksp^`^e;W䝝H@Mm^_=}} |1|- F.n~v]l 삞skZ7Q`@9q,1GfmZz͌D-$&sQwn1P$96#R2)p?,XAf_::\nƿi!SW KZ!*Sj ]V.AK\U/|Z{XkFaK581klLXLD 57,ħ+=] N_@۴60(A(uuĢC P c>HgLd״Dd  b   c $A ? ?3"`?2MeXM{) `!!eXM{ 1xڵUOA3Ŷؒ`bh$JT]ubbIIG=D\4Ųˆeh:1x^\'/g1p;gʼ2+Πpꏝ:d$ccZƸڕGz|y}ԝqCM)15251S`6x|<ׅ0#|3ӅS^]9 "',E603[#Iv'ai\k\e. 1LWڡ}QVs D  n+} te3`IB͈.ٶ~*7 EM{BŠ, y'os(5^d%xᐉytfBOo=@M^M QDd [b   c $A ? ?3"`? 2I4Ͷ rP?% e%" `!4Ͷ rP?% e`)SxڵUOA3;l[/ْh4xH&)r1)UW@YJH$1 9(/ƣ ѣbb81uhb}[y1g #cRɒbc24աtFf(qcjP~m >Dj~F$ƅ@яe:)qG7V6pC85Y3JZ! 6^2iglcr͍&ž+t$[#"z,NpY(ZX4o3_,fY'Cf3oT;ofhq/3Z% 2\.$ABსl3Qxw&b=/^ +U+!kw"kd>{՘v^X˝{Me잍F,FSFG'L@}#XuTO&_5kÙZ%IP5n, Lw AmR$~..KJ~ԓF)bWlUy󨹄t_'@$u8l"l t~ܔ=H@BR*m41W8 uPXa[hh/l9H{:DԊUZ? v\Xm *oH~ܐ6qpҾ_ m#Q P/ Uɵ3*l9KU2+^ 5 {$j=K]s:r ]%KE{_R\q8=8${LZɀEyLk~C)Frp>|orpZcsdLwlb1Rfv_I@Q}+|_OG~~50d߉\hh36 'N}30ҙr1cT]r8q!). UCKI_`o4ԗiz!vge';(:x4ydPZgOvCv],D=Unɟ>Q25`P5o0T*]aWҵ?3~׃!Ehxp8bDD[QtTA@aH?PقʛI6QE+(8?tN݁Օ@Wڡ{ՉmGY?(XV?p-]qFfL cDd h   s *A ? ?3"`? 28 .nuмh Փ+ `!{8 .nuмh Փ " IxڽVKOSA>3so)b F%R ML`(eXtab-z&ZZHq+ą'hl\+!>LVjs;f޹JK @)!T*ጯjLtM@`jH{{#\e>P N8c!$"{%ݦ*ЪU4_{^ɭR^UbFDDdP F|(7?Mc?OE˯?܄@lܷ\\n :H3I:EzK!hw=3WX\l#sbroґ!5%i\dY{z$ 2KǒUu+lJIgaíNhLqi핞 c+q'.\s Ƃ#QKN;_Ɨ%;w47/<HjgP#`W2ka;Cu*e8טq,:\g}oM4{ ٝ<\e1w%QgP@z=CEu1L*@ڢd> 28'"ppm,.Go~on$i6ImN2Z&L[>LdULmۜO*$M0lƲ汔pT\).i|*셖1OoA8Gxb 9XU>z~OU-l; JE| PQzf$)zbϰn&؊3w 2vvG~ `G_67V:ep#$A(5N0fp$[?UÐʹPekGYu*P?͠~o3֕㟰_%@JK dR2FbxÉǵS猰K7C0݌$D@&XVh?uh 1W!,OyFX??xev: vڧ @x:c&x!pc}t~f[?FDd Hh  s *A? ?3"`? 2XFևÅu\`qu_f3 `!^XFևÅu\`qu_ @%9@ ,xڽW]hU>ΝdFdn KB TAmiI,}eLuNMb~@hIDP" E0$J^m(>(}j_|A}4e93;$&d3ss]5mS+IES`GJZ|]u(=h"i:}3>*Y/3*xAGHCDCW G}pFW0ݙ=a+`ye{l}g F]俴S߁Ƿ] Fhtu2zZdP jB& RftP\hRYQ)#y/zkdfkߏ(v98[{f|^|M1Λ&TG 1x E1?3\gdN9Dd ,c h  s *A? ?3"`?2n`0x;:uB9 `!n`0x;:u)@qxYmL[U~=v@q I&HL !RklcɂfɈ` ?d$Øa?ܯKs}=FE>;G"j"ei~"U_Z*`9Cвop_D]{h؄X+DZCa[sl; Q6vc6^Qq]荌bXYL#n}Fqu6n5~hiʆ`<,VՐE2+gl?ZOZ0s~6 9s[t~ \x,:eã(6ǼZ#cY1zוʸp!)fG¡:.p e`]rJpu,`gt?Va1f֐ɦ#q2G:Uژo(2 >aѐj]yd9Z|Jt6X}GަޯWjr53ƄR/nɵ¡h)+!})]h6qS*1Z0R E2@4 B3md14WŮ)nz.G󂢸2aJU(n4Җ32"FGDo.CLT?"1$&_#雤ӰN7^˜V0ɥ,|qLf$rj(UL~7f讬f B䈞Qg2_39OHԵ|s+mkªiM?4q-7 nX_F['#fѣMfk :/KCRTSUBGɀ4:I{~Mߜg{W*{㻜b*g6ЀVgW|w| 쌳wS$@伲kQegf?AS9]> `Pv+vq'0wA_wAi!LoG^9*6(H(hGAH";VVI4Uppj,yJ 'xMʞ->4yܪ=Q1:4gvM sL7@CGmخ\ .v5'2]9j 7M`*v,惓M,K,OM[)k+ `y!/BlwP,_Ҁ@ SDd D h  s *A? ?3"`?2m7wQem^6bs? `!km7wQem^6b 3 P9xڥVKhSA3%!Ikjł5F.&B)iQ4Mi@ ⦂PmRЍ ..]PP7ƕx$m>{Ν;sϙ;G@`Rbd%B$YHsV9; 5Ftin @O(/bXꬕ\1?4GttJ ;!_$T r+'>$4Z## uNdU~ˏMw)𱪫P ݡx8XkZxQ<;k9%d||V 158 yUyh>ƅIk_km=Uç9Kο:w[_O`V`{!9Z,t""/Mp56%KR#l? {/]CW7xuc|iP[׀?91slT_j/H:* ?ϳܹvw0%%s4` ;w10(Kh`ٙ1({#x?ȓhzɇYә#zH5OHxPzHL@JpjG<}: "@vf@c08W<)& Pm\۴ ?EV3aɊ c}nbՄH.XWnR8"X9m9h{rٞYfLDq X!bM=e9Ȟ}z8 >?_Dlmwq 0-hҳIWsqDd ,0  # A28FDO%(7 D `!8FDO%(7(`!x]PM/Q=h'HCDg$$H$bkZ h14i;j"!`!`aIXXI}CļgνyPB< ΘoM! >? Oh[ڢ+sKxNb]*vm/w 9O p/|#+5dp^sEmSM7lPq MB,vtT QҦ[R=("ҕ驣ZFdh3KiG͌7R޸LXZR+_D-{1Ih< G :+0z׍q>mTkN 8}y\7(R kvEDd h0  # A2/|;XVaF `!/|;XVa`@!|xuQKQh6?*"n޳&^Iv[1?Jɀ7/'O <xK=KIBәFvo773[%@Y~6E!REKBjV)AqFsf1`!+6f8#E[ l*S%YR\)VjvK_;z76]9 }ZE抐 J6=HJ&ni!<>6A;^}wJ*SʶYXʇt>-D fGfn!wቱ>?37e3?H0δf:JQDK$A9 fUg3)gL-L d~2Xu4)\oInmװ c%8{ i:*W ɀ̛Dd h0  # A2Vm-A1Q)c'*I `!Vm-A1Q)c'ߒ`@!|xuQMKa~]&ITEn)Zzw MǸc>Jz!y_z={.nOfD<|&- 5aSD!"HOB.q1hQj,zuęddΈQ1dǂw[ʄ)ASMKܪ廠SRmn|W8:f[^lb8;’.IZZ_L/M-ͺ~t#6A g;Tjmvx5ps"Zg }\^qts%Wٮ(]T/u9DbdXf|ձ^)ڹ3;O6ō4yՙ`XgOŌ/mLB^Afuk Lߡl3c,;&FӭB'p8H$ϔ4N8NDd ( hh  s *A? ?3"`?2Ciy8-UonK `!fCiy8-Uo@@1|4xuR͋a8: ~lc(nFA@u:I*mt͏pCXDKeT:tR-lTd3VK;~$JK !G"Me܎wqX7XkO3<@A& 6Izue?}o4 :!8޿R6JPUbmvZ|Yϭu\*pu\Ea Q-^*J `|m5S/lY4|5ۼѮm6"ll|x+2=Uკϗ[*!/K0?jּ5 R5gyشj]FQQu'ɹXH~A~ $Ⱥw6)=pfՏ=/x[Hyt|S<ܵCSgDĺnDd ,0  # A2c!| e ԷSO `!c!| e ԷS(`!x]PM/Q=MHՊ &bk V#54i~HuEbgSʿ,, k+"=s=; A@I0ÅxT ΘzͲ `,NhOzyD!@YQä]>tM9%(q\g)|O;`2qDriyUoG ]oYNfnTH>U\[ *s<(ʒ(o`9 ;cJ]r+TJGSE9K761`NwO1\2 Y4^֛:K%BQ-Mԯ! "VaCh)Sz58\ jHpg5uVm|_Dh:U@8FS`\Ji.x"_ uiDd h0  # A2&?/}">d>}gQ `!?/}">d>}g@xt|xuRMOa~] lm]I,K% 4i)ړ ޸ԋ7/8+ox3'v[;;3̳0eP8\!6E RnG4T5Y36p]!cQ\0SlcKGکG.|JЄj*~_q|Jnvr95ih{CL[b~5"4J/x֫P+G 霙zY:#w@w$|] ݽDRt!0phN,Y~f}XbZYzZ.RZpqZ; WVZۙܬ& ^{F]gЉpG-oks|&Oy؆N r  Nk0HGQѽ'΅mn 2G -^ok?'pDd ,0  # A2ΔAdM_(knn[+T `!ΔAdM_(knn[(`!x]PM/Q=hL3 $M#lJ14i;Φ`a’c%Q=CļgνyP p gGw:٠υO_?u#4ѭbь%D&d>}gV `!?/}">d>}g@xt|xuRMOa~] lm]I,K% 4i)ړ ޸ԋ7/8+ox3'v[;;3̳0eP8\!6E RnG4T5Y36p]!cQ\0SlcKGکG.|JЄj*~_q|Jnvr95ih{CL[b~5"4J/x֫P+G 霙zY:#w@w$|] ݽDRt!0phN,Y~f}XbZYzZ.RZpqZ; WVZۙܬ& ^{F]gЉpG-oks|&Oy؆N r  Nk0HGQѽ'΅mn 2G -^ok?' < H T `lt| C:\WINAPP\BRANKO.DOC\SMCCAS.ASC:\W Bojan abecoja Normal.dot MAC-Branko2C-Microsoft Word 10.0@F#@t6 @@..՜.+,0 hp|  FSBbDocumentSummaryInformation8m8CompObjrj,6A  C:\WINAPP\BRANKO.DOC\SMCCAS.ASC Title  FMicrosoft Word Document MSWordDocWord.Document.89qH@H Normal5$7$8$9DH$_HmH sH tH v@v Heading 1?$$ & @0@ P@p#$`'')0*@&]a$ 5;CJH@H Heading 2$$@&a$ 5>*CJ\p@p Heading 3?$$ & @0@ P@p#$`'')0*@&]a$CJ>@> Heading 4$$@&a$CJf@f Heading 50$$ `@ ')@&]a$ 5CJ\@ Heading 6O$$ & @P"" %@&)0*x@&^`a$5CJD@D Heading 7$$@&a$ 5CJ\DA@D Default Paragraph FontViV  Table Normal :V 44 la (k(No List hB@h Body Text7$ @0 &x]a$CJBP@B Body Text 2$a$ 6CJ]TQ@T Body Text 3$ @` &a$CJlC@"l Body Text Indent2$ `@ ')s^`sa$G6z.q'6Fax 2 !"`aghHV !!E""##*$$-%]&&((***z.{..8//0f1223]4u5I60h000q0000(0(000800F(00x0xH0x000000p00X00"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0"0" 0"0"0" 0" 0" 00" 0"0" 0" 0 0(0"p0"p00"p0"0"p000(00000"00000 ?v <" $%&'**+,-.V011<48u=G> $%&()*+,-./12345678:< E*z6:G>!#'09;G>"+?Ag';=  "vu !"""""#$$%%%c&w&y&&&&&&&&''V(j(l(((()))i))))))G6::::::::::::::::::::::::  L4 $* d)  t    ) t L {{6LLZqqxxI6  ;V``wwI6 >*urn:schemas-microsoft-com:office:smarttags PersonName_ *urn:schemas-microsoft-com:office:smarttagscountry-regionhttp://www.5iantlavalamp.com/8 *urn:schemas-microsoft-com:office:smarttagsCity=*urn:schemas-microsoft-com:office:smarttags PlaceName=*urn:schemas-microsoft-com:office:smarttags PlaceTypeV *urn:schemas-microsoft-com:office:smarttagsplacehttp://www.5iantlavalamp.com/    66I6&&g)i)6!6I633.6FaxghHV !!E""#$-%((**{..I666I6 NOVAKOVIC NOVAKOVIC NOVAKOVIC NOVAKOVIC NOVAKOVIC NOVAKOVIC NOVAKOVIC NOVAKOVIC NOVAKOVIC MAC-BrankoPdim|Z~&s9 R Na y " ,p 8d`_qP&0q4@?gBDzF7GX(HU*IfK>SIU?VdXP(\.]^<`LmbBeGe|efCiS7jYk5l2m)nNop q_s%euUw=rvoa #1KV0hn:e^@H7_hwL/MeoDO[6(h%@MTI[ Cx nTg (wIdZ>@d&D,2}@Lexmark C510Ne00:winspoolLexmark C510Lexmark C510XA4,DINU"4 OTKMXLLexmark C510XA4,DINU"4 OTKMXL666666G6 @UnknownGz Times New Roman5Symbol3& z Arial!h<&<&t..b..bxx24d,6,6 3QH(?gC:\WINAPP\BRANKO.DOC\SMCCAS.ASC Bojan `abec MAC-BrankoޙF$hxpvw{w (0