Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 36320

Machine learning approach to the analysis of peptide immunomodulation in multiple sclerosis and optic neuritis.


Štambuk, Nikola; Brinar, Vesna; Brzović, Zdravko; Zurak, Niko; Marušić-Della Marina, Branka; Mašić, Nikola; Karaman, Ksenija; Štambuk, Vjera; Mažuran, Renata; Svoboda Beusan, Ivna et al.
Machine learning approach to the analysis of peptide immunomodulation in multiple sclerosis and optic neuritis. // Clinical Chemistry and Laboratory Medicine, Vol. 37, Spec. Suppl. / Siest, G. (ur.).
Berlin: Walter de Gruyter, 1999. (poster, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 36320 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Machine learning approach to the analysis of peptide immunomodulation in multiple sclerosis and optic neuritis.

Autori
Štambuk, Nikola ; Brinar, Vesna ; Brzović, Zdravko ; Zurak, Niko ; Marušić-Della Marina, Branka ; Mašić, Nikola ; Karaman, Ksenija ; Štambuk, Vjera ; Mažuran, Renata ; Svoboda Beusan, Ivna ; Rabatić, Sabina ; Marotti, Tanja ; Rudolf, Maja ; Malenica, Branko ; Trbojević-Čepe, Milica ; Šverko, Višnja ; Pokrić, Biserka

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Clinical Chemistry and Laboratory Medicine, Vol. 37, Spec. Suppl. / Siest, G. - Berlin : Walter de Gruyter, 1999

Skup
17th International and 13th European Congress of Clinical Chemistry and Laboratory Medicine

Mjesto i datum
Firenca, Italija, 06.06.1999. - 11.06.1999

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
peptide therapy; machine learning; decision tree; peptid-M; non-linear prediction; multiple sclerosis; optic neuritis

Sažetak
Objectives: Peptide immunotherapy has been successfully applied as a therapeutic procedure for several immune-mediated diseases. Empirical observations showed that standard statistical approach is not an appropriate tool for the determination of prognostic parameters during peptide therapy. Therefore, we applied machine learning approach based on the C4.5 decision tree as a classifier. The method has been tested on the model of peptid-M (PENK_HUMAN 100-104 aa) vaccination in multiple sclerosis and optic neuritis. Methods: C4.5 decision tree has been tested on the model of peptid-M (Lupex) therapy in multiple sclerosis/optic neuritis. Results: Decision rules generated by the classifier extracted relationships between different parameters relevant for the prediction of beneficial peptide effects. The training set for the decision tree generator consisted of 38 tests observed before and one month after the peptide administration. Predictive parameters were EDSS, IFN, sIL-2R, sCD23 and peripheral blood cell populations CD20+23+, CD8+, CD8+beta2-M+, CD4+, CD4+b2-M+, CD4+25+ and CD3+16+56+. Conclusion: The accuracy of the procedure with respect to the therapy was 92- 100% for small samples. This model of non-linear prediction provided useful alternative to the standard statistical approach, enabled the extraction of few relevant parameters or their mutual relationships and ensured accurate prediction of the therapeutic procedure. The data were comparable to the clinical amelioration evaluated by the improvement of EDSS, VEP, colour vision, visual fields and MRI findings, 6 months and one year following the beginning of treatment.

Izvorni jezik
Engleski

Znanstvena područja
Javno zdravstvo i zdravstvena zaštita, Farmacija



POVEZANOST RADA


Ustanove:
Imunološki zavod d.d.,
Institut "Ruđer Bošković", Zagreb


Citiraj ovu publikaciju:

Štambuk, Nikola; Brinar, Vesna; Brzović, Zdravko; Zurak, Niko; Marušić-Della Marina, Branka; Mašić, Nikola; Karaman, Ksenija; Štambuk, Vjera; Mažuran, Renata; Svoboda Beusan, Ivna et al.
Machine learning approach to the analysis of peptide immunomodulation in multiple sclerosis and optic neuritis. // Clinical Chemistry and Laboratory Medicine, Vol. 37, Spec. Suppl. / Siest, G. (ur.).
Berlin: Walter de Gruyter, 1999. (poster, međunarodna recenzija, sažetak, znanstveni)
Štambuk, N., Brinar, V., Brzović, Z., Zurak, N., Marušić-Della Marina, B., Mašić, N., Karaman, K., Štambuk, V., Mažuran, R. & Svoboda Beusan, I. (1999) Machine learning approach to the analysis of peptide immunomodulation in multiple sclerosis and optic neuritis.. U: Siest, G. (ur.)Clinical Chemistry and Laboratory Medicine, Vol. 37, Spec. Suppl..
@article{article, author = {\v{S}tambuk, Nikola and Brinar, Vesna and Brzovi\'{c}, Zdravko and Zurak, Niko and Maru\v{s}i\'{c}-Della Marina, Branka and Ma\v{s}i\'{c}, Nikola and Karaman, Ksenija and \v{S}tambuk, Vjera and Ma\v{z}uran, Renata and Svoboda Beusan, Ivna and Rabati\'{c}, Sabina and Marotti, Tanja and Rudolf, Maja and Malenica, Branko and Trbojevi\'{c}-\v{C}epe, Milica and \v{S}verko, Vi\v{s}nja and Pokri\'{c}, Biserka}, editor = {Siest, G.}, year = {1999}, pages = {W154}, keywords = {peptide therapy, machine learning, decision tree, peptid-M, non-linear prediction, multiple sclerosis, optic neuritis}, title = {Machine learning approach to the analysis of peptide immunomodulation in multiple sclerosis and optic neuritis.}, keyword = {peptide therapy, machine learning, decision tree, peptid-M, non-linear prediction, multiple sclerosis, optic neuritis}, publisher = {Walter de Gruyter}, publisherplace = {Firenca, Italija} }
@article{article, author = {\v{S}tambuk, Nikola and Brinar, Vesna and Brzovi\'{c}, Zdravko and Zurak, Niko and Maru\v{s}i\'{c}-Della Marina, Branka and Ma\v{s}i\'{c}, Nikola and Karaman, Ksenija and \v{S}tambuk, Vjera and Ma\v{z}uran, Renata and Svoboda Beusan, Ivna and Rabati\'{c}, Sabina and Marotti, Tanja and Rudolf, Maja and Malenica, Branko and Trbojevi\'{c}-\v{C}epe, Milica and \v{S}verko, Vi\v{s}nja and Pokri\'{c}, Biserka}, editor = {Siest, G.}, year = {1999}, pages = {W154}, keywords = {peptide therapy, machine learning, decision tree, peptid-M, non-linear prediction, multiple sclerosis, optic neuritis}, title = {Machine learning approach to the analysis of peptide immunomodulation in multiple sclerosis and optic neuritis.}, keyword = {peptide therapy, machine learning, decision tree, peptid-M, non-linear prediction, multiple sclerosis, optic neuritis}, publisher = {Walter de Gruyter}, publisherplace = {Firenca, Italija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font