Pregled bibliografske jedinice broj: 36320
Machine learning approach to the analysis of peptide immunomodulation in multiple sclerosis and optic neuritis.
Machine learning approach to the analysis of peptide immunomodulation in multiple sclerosis and optic neuritis. // Clinical Chemistry and Laboratory Medicine, Vol. 37, Spec. Suppl. / Siest, G. (ur.).
Berlin: Walter de Gruyter, 1999. (poster, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 36320 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine learning approach to the analysis of peptide immunomodulation in multiple sclerosis and optic neuritis.
Autori
Štambuk, Nikola ; Brinar, Vesna ; Brzović, Zdravko ; Zurak, Niko ; Marušić-Della Marina, Branka ; Mašić, Nikola ; Karaman, Ksenija ; Štambuk, Vjera ; Mažuran, Renata ; Svoboda Beusan, Ivna ; Rabatić, Sabina ; Marotti, Tanja ; Rudolf, Maja ; Malenica, Branko ; Trbojević-Čepe, Milica ; Šverko, Višnja ; Pokrić, Biserka
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Clinical Chemistry and Laboratory Medicine, Vol. 37, Spec. Suppl.
/ Siest, G. - Berlin : Walter de Gruyter, 1999
Skup
17th International and 13th European Congress of Clinical Chemistry and Laboratory Medicine
Mjesto i datum
Firenca, Italija, 06.06.1999. - 11.06.1999
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
peptide therapy; machine learning; decision tree; peptid-M; non-linear prediction; multiple sclerosis; optic neuritis
Sažetak
Objectives: Peptide immunotherapy has been successfully applied as a therapeutic procedure for several immune-mediated diseases. Empirical observations showed that standard statistical approach is not an appropriate tool for the determination of prognostic parameters during peptide therapy. Therefore, we applied machine learning approach based on the C4.5 decision tree as a classifier. The method has been tested on the model of peptid-M (PENK_HUMAN 100-104 aa) vaccination in multiple sclerosis and optic neuritis. Methods: C4.5 decision tree has been tested on the model of peptid-M (Lupex) therapy in multiple sclerosis/optic neuritis. Results: Decision rules generated by the classifier extracted relationships between different parameters relevant for the prediction of beneficial peptide effects. The training set for the decision tree generator consisted of 38 tests observed before and one month after the peptide administration. Predictive parameters were EDSS, IFN, sIL-2R, sCD23 and peripheral blood cell populations CD20+23+, CD8+, CD8+beta2-M+, CD4+, CD4+b2-M+, CD4+25+ and CD3+16+56+. Conclusion: The accuracy of the procedure with respect to the therapy was 92- 100% for small samples. This model of non-linear prediction provided useful alternative to the standard statistical approach, enabled the extraction of few relevant parameters or their mutual relationships and ensured accurate prediction of the therapeutic procedure. The data were comparable to the clinical amelioration evaluated by the improvement of EDSS, VEP, colour vision, visual fields and MRI findings, 6 months and one year following the beginning of treatment.
Izvorni jezik
Engleski
Znanstvena područja
Javno zdravstvo i zdravstvena zaštita, Farmacija
POVEZANOST RADA
Ustanove:
Imunološki zavod d.d.,
Institut "Ruđer Bošković", Zagreb
Profili:
Biserka Pokrić
(autor)
Vesna Brinar
(autor)
Nikola Štambuk
(autor)
Ivna Svoboda-Beusan
(autor)
Vjera Štambuk
(autor)
Ksenija Karaman
(autor)
Sabina Rabatić
(autor)
Milica Trbojević-Čepe
(autor)
Tatjana Marotti
(autor)
Ana-Višnja Šverko
(autor)
Nikola Mašić
(autor)
Zdravko Brzović
(autor)
Branka Marušić-Della Marina
(autor)
Renata Mažuran
(autor)
Branko Malenica
(autor)