Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 360570

Analysis of ECG Records using ECG Chaos Extractor Platform and Weka System


Jović, Alan; Bogunović, Nikola
Analysis of ECG Records using ECG Chaos Extractor Platform and Weka System // Proceedings of the ITI 2008 30th International Conference on Information Technology Interfaces / Luzar-Stiffler, Vesna ; Hljuz Dobrić, Vesna ; Bekić, Zoran (ur.).
Zagreb: Institute of Electrical and Electronics Engineers (IEEE), 2008. str. 347-352 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 360570 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Analysis of ECG Records using ECG Chaos Extractor Platform and Weka System

Autori
Jović, Alan ; Bogunović, Nikola

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the ITI 2008 30th International Conference on Information Technology Interfaces / Luzar-Stiffler, Vesna ; Hljuz Dobrić, Vesna ; Bekić, Zoran - Zagreb : Institute of Electrical and Electronics Engineers (IEEE), 2008, 347-352

ISBN
978-953-7138-12-7

Skup
Information Technology Interfaces, ITI 2008

Mjesto i datum
Dubrovnik, Hrvatska; Cavtat, Hrvatska, 23.06.2008. - 26.06.2008

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
chaos features; ECG analysis; clustering methods; classification methods

Sažetak
Clustering and classification of ECG records for four patient classes from the internet databases by using the Weka system. Patient classes include normal, atrial arrhythmia, supraventricular arrhythmia and CHF. Chaos features are extracted automatically by using the ECG Chaos Extractor platform and recorded in Arff files. The list of features includes: correlation dimension, central tendency measure, spatial filling index and approximate entropy. Both ECG signal files and ECG annotations files are analyzed. The results show that chaos features can successfully cluster and classify the ECG annotations records by using standard and efficient algorithms such as EM and C4.5.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Kliničke medicinske znanosti



POVEZANOST RADA


Projekti:
098-0982560-2563 - Algoritmi strojnog učenja i njihova primjena (Gamberger, Dragan, MZOS ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Nikola Bogunović (autor)

Avatar Url Alan Jović (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Jović, Alan; Bogunović, Nikola
Analysis of ECG Records using ECG Chaos Extractor Platform and Weka System // Proceedings of the ITI 2008 30th International Conference on Information Technology Interfaces / Luzar-Stiffler, Vesna ; Hljuz Dobrić, Vesna ; Bekić, Zoran (ur.).
Zagreb: Institute of Electrical and Electronics Engineers (IEEE), 2008. str. 347-352 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Jović, A. & Bogunović, N. (2008) Analysis of ECG Records using ECG Chaos Extractor Platform and Weka System. U: Luzar-Stiffler, V., Hljuz Dobrić, V. & Bekić, Z. (ur.)Proceedings of the ITI 2008 30th International Conference on Information Technology Interfaces.
@article{article, author = {Jovi\'{c}, Alan and Bogunovi\'{c}, Nikola}, year = {2008}, pages = {347-352}, keywords = {chaos features, ECG analysis, clustering methods, classification methods}, isbn = {978-953-7138-12-7}, title = {Analysis of ECG Records using ECG Chaos Extractor Platform and Weka System}, keyword = {chaos features, ECG analysis, clustering methods, classification methods}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Dubrovnik, Hrvatska; Cavtat, Hrvatska} }
@article{article, author = {Jovi\'{c}, Alan and Bogunovi\'{c}, Nikola}, year = {2008}, pages = {347-352}, keywords = {chaos features, ECG analysis, clustering methods, classification methods}, isbn = {978-953-7138-12-7}, title = {Analysis of ECG Records using ECG Chaos Extractor Platform and Weka System}, keyword = {chaos features, ECG analysis, clustering methods, classification methods}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Dubrovnik, Hrvatska; Cavtat, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font