Pregled bibliografske jedinice broj: 360570
Analysis of ECG Records using ECG Chaos Extractor Platform and Weka System
Analysis of ECG Records using ECG Chaos Extractor Platform and Weka System // Proceedings of the ITI 2008 30th International Conference on Information Technology Interfaces / Luzar-Stiffler, Vesna ; Hljuz Dobrić, Vesna ; Bekić, Zoran (ur.).
Zagreb: Institute of Electrical and Electronics Engineers (IEEE), 2008. str. 347-352 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 360570 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analysis of ECG Records using ECG Chaos Extractor Platform and Weka System
Autori
Jović, Alan ; Bogunović, Nikola
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the ITI 2008 30th International Conference on Information Technology Interfaces
/ Luzar-Stiffler, Vesna ; Hljuz Dobrić, Vesna ; Bekić, Zoran - Zagreb : Institute of Electrical and Electronics Engineers (IEEE), 2008, 347-352
ISBN
978-953-7138-12-7
Skup
Information Technology Interfaces, ITI 2008
Mjesto i datum
Dubrovnik, Hrvatska; Cavtat, Hrvatska, 23.06.2008. - 26.06.2008
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
chaos features; ECG analysis; clustering methods; classification methods
Sažetak
Clustering and classification of ECG records for four patient classes from the internet databases by using the Weka system. Patient classes include normal, atrial arrhythmia, supraventricular arrhythmia and CHF. Chaos features are extracted automatically by using the ECG Chaos Extractor platform and recorded in Arff files. The list of features includes: correlation dimension, central tendency measure, spatial filling index and approximate entropy. Both ECG signal files and ECG annotations files are analyzed. The results show that chaos features can successfully cluster and classify the ECG annotations records by using standard and efficient algorithms such as EM and C4.5.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
098-0982560-2563 - Algoritmi strojnog učenja i njihova primjena (Gamberger, Dragan, MZOS ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Institut "Ruđer Bošković", Zagreb