Pregled bibliografske jedinice broj: 345673
Packing of monodisperse DNA-RecA protein complexes
Packing of monodisperse DNA-RecA protein complexes // Abstract book of 6th International Conference of Biological Physics / Grigera, J.Raul (ur.).
Montevideo: Imprenta Gega s.r.l., 2007. str. 84-84 (poster, nije recenziran, sažetak, znanstveni)
CROSBI ID: 345673 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Packing of monodisperse DNA-RecA protein complexes
Autori
Vuletic, Tomislav ; Raspaud, Eric ; Leforestier, Amelie, Renouard, Madalena ; Livolant, Francoise
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Abstract book of 6th International Conference of Biological Physics
/ Grigera, J.Raul - Montevideo : Imprenta Gega s.r.l., 2007, 84-84
ISBN
978-9974-8002-2-9
Skup
6th International Conference on Biological Physics
Mjesto i datum
Montevideo, Urugvaj, 27.08.2007. - 31.08.2007
Vrsta sudjelovanja
Poster
Vrsta recenzije
Nije recenziran
Ključne riječi
RecA protein; liquid crystals; persistence length; protein-DNA interaction
Sažetak
We study E.coli RecA protein, from preparation and purification of protein monomers to structural and functional studies of protein polymers formed on DNA – nucleoprotein filaments. RecA protein is a multirole one, where DNA strand exchange by forming nucleoprotein filament during homologous recombination and cleavage of SOS response repressors are the most prominent two. The first role, where we are interested into structural details (and structure makes function, very much so in this case) also came recently into focus with the work of Zahradka et al. (Nature 2006), where reassembly of shattered chromosomes in D. radiodurans is completed by RecA-dependent crossovers. RecA is a relatively small protein, MW = 37, 842, with 352 amino acid residues. Only by polymerizing within nucleoprotein filaments it achieves its function. The RecA polymers have been crystallized and structure determined to atomic resolution by XRD, however the structure of RecA-DNA complex is not solved, and the exact path of DNA within the nucleoprotein filament is not known, although it has been extensively studied by SANS, electron microscopy or NMR. We form RecA nucleoprotein filaments using very short, monodisperse, 146 bp long DNA. Such 50~75 nm long filaments are shorter than their respective persistence length – i.e. they should behave as straight rods. A monodisperse colloidal system of helical rodlike particles is capable of forming liquid crystal. This, indeed, might be the most ordered possible preparation of nucleoprotein filaments. Studying it by optical and electronic microscopies and XRD will allow further insight into the function of RecA. There are several routes of investigation: the nucleation and growth process observed for short filaments, their structural parameters and the properties of the liquid crystalline phase they could form. * permanent position: Institut za fiziku, Zagreb, Croatia
Izvorni jezik
Engleski
Znanstvena područja
Fizika, Drvna tehnologija
POVEZANOST RADA
Projekti:
035-0000000-2836 - Jako korelirani anorganski, organski i biomaterijali (Tomić, Silvia, MZOS ) ( CroRIS)
Ustanove:
Institut za fiziku, Zagreb
Profili:
Tomislav Vuletić
(autor)