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Abstract: The paper describes the use of self-oscillation identification method for controller
design for underwater vehicles. Using the proposed algorithm both linear and nonlinear models
can be obtained. In addition to that, the algorithm enables identification of the bias term that
appears due to currents (in yaw models) and difference between weigh and buoyancy (in heave
models). A detailed stability analysis has been performed for the proposed controller which is
either linear or nonlinear based on the assumption on the process model. Simulation results are

presented for two underwater vehicles.
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1. INTRODUCTION

The complete control architecture of vehicles can be di-
vided in three major levels: low, mid and high, Miskovic
et al. (2006). While mid and high levels are in charge
for trajectory planning and mission control, respectively,
low level controls all controllable degrees of freedom of a
vehicle. In order to achieve satisfactory performance at
higher levels, low level control should be designed prop-
erly. In most cases, low level control architecture includes
yaw, surge and depth control. Many algorithms have been
developed for control of these degrees of freedom, start-
ing from linear PID controllers all the way to intelligent
controllers, Fossen (1994), Caccia and Veruggio (2000).
Classical methods used for identification usually require
a great number of experiments in order to obtain a satis-
factory model, Ljung (1999), Fossen (1994), Caccia et al.
(2000), Caccia et al. (2006), Miskovic et al. (2007a), Ridao
et al. (2004), Stipanov et al. (2007). The advantage of these
methods is that the more data is available, the more precise
model can be obtained. The greatest disadvantage is that
they are time-consuming and disturbances have significant
influence on the results. The most popular identification
method for marine vehicles is the ”zig-zag” manoeuver,
Lépez et al. (2004). The advantage of this method is
that the disturbances are partially compensated due to
the closed-loop and the experiment itself is not time-
consuming. However, this method gives only linear models
of marine vehicles.

In Section II the self-oscillation identification method is
briefly described. The full description can be found in
Miskovic et al. (2007c) and Miskovic et al. (2007b). The
method is also augmented for systems with bias signals. In
Section III I-PD controller design for heading and depth
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Fig. 1. Closed-loop scheme for inducing self-oscillations.

control is presented. The controller is of I-PD type and
is designed in such a way that system nonlinearities are
compensated if they exist. The greatest advantage is that
this controller gives smooth control action, Vukic and
Kuljaca (2005). In addition to that, a proof of stability is
given with reflection to structural stability of the closed
loop system. Section IV gives simulation examples for
control of heading and depth of the FALCON ROV and
heading of VideoRay Automarine AUV. The paper is
concluded with Section V.

2. IDENTIFICATION BY USE OF
SELF-OSCILLATIONS

The self-oscillations identification method can be used
to determine parameters of linear and nonlinear models
under the assumption that the model structure is known.
The method is based upon forcing the system into self-
oscillations. The experiment for that is done in closed-loop
which consists of the process itself and a nonlinear element,
as shown in Fig. 1.

The nonlinear element should be chosen in such a way
that oscillations can be obtained. The most common
nonlinearity used in practice is a relay with hysteresis since
it can cause self-oscillations in every system whose Nyquist
characteristic passes through the ITI quadrant, Vukic et al.
(2003) and Netushil (1978).



While describing marine vehicle dynamics, usually two
models are used: the linear one, (1) which has a constant
drag, and the nonlinear one, (2) whose drag is linear,
Fossen (1994), Caccia et al. (2000). In both models,
variable x is usually heading, v, depth, z, or any other
degree of freedom which is to be controlled. Parameter
7 is the excitation force (e.g. surge force, yaw moment).
Parameter § can either be external disturbance (in the case
of identifying yaw model) or a vehicle physical parameter
such as difference between weigh and buoyancy (in the case
of identifying heave model).

i (t) + kpi (t) + 0 = 7 (t) (1)
i (t) + koe | (8)]| 3 (8) + 5 =7 (2) (2)

2.1 Identification of o, k; and kg,

For now, let us assume that § = 0. If a system can be
described with (1) or (2) the unknown parameter o can be
identified using (3). If the system can be described with (1)
than parameter k, can be identified using (4). On the other
hand, (5) is used if a system can be described with (2) and
k.. should be identified, see Miskovic et al. (2007¢) and
Miskovic et al. (2007b).

a= 7PN5}§m) (3)
by = - 20 ) (4)
3 N Xm

In (3), (4) and (5) w is the frequency and X,,, magnitude
of self-oscillations, Py (X,,) and Qu (X,,) are real and
imaginary parts of the describing function of the nonlin-
ear element respectively. For the relay with hysteresis,

2
P(Xp) = 2&4/1- (%) and QX)) = —2G

where C is relay output, and x, relay width, Vukic et al.
(2003).

The main assumptions that are posed on given equations
are that the oscillations are symmetric and that higher har-
monics are negligible in comparison to the first harmonic.
For more details on derivation of the given equations, the
reader is referred to Miskovic et al. (2007¢), Miskovic et al.
(2007b) and Vukic et al. (2003).

2.2 Identification of 6

If a general process of n-th order, includes a constant term
) () ,5) =7 (),

dtﬂ,

self-oscillations will not be symmetric. If Ty represents
the time when relay output is in ”high” position, and T},
represents the time when relay output is in ”low” position,
Ty will differ from T, as shown in Fig. 2. This means that
equations (3), (4), and (5) are not valid. However, based
on times Ty and T the bias term can be determined,
using (6) and thus compensated for within the controller.

C+56 T Ty — 1T,
— = === 6
—(-C+9¢) 1T Ty +Tr (©)

4, i.e. it can be presented as f (
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Fig. 2. Asymmetric output from the relay with hysteresis
3. CONTROLLER DESIGN

In this section we will present a controller which is designed
based on a model function. Using the proposed controller,
even a nonlinear process will give desired response. This
will be achieved by compensating the nonlinearity which
arises in the system itself. Under the assumption that the
process in general can be written using

ai () + e (8) = 7 (1), (7)

where

_ k. for linear model
© =\ kae |#| for nonlinear model’

the I-PD controller algorithm has the equation given
with (8), Vukic and Kuljaca (2005).

T(t) = K7 / [Tres (t) —z (t)]dt — Kpx (t) — Kpd (t) (8)

Using the proposed control algorithm, the closed loop
equation is
T 1

= (9)

T a3, etKp 2 4 Kp )
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The controller parameters are set so that the closed-loop
transfer function is equal to the model function G, (s) =

m which is stable. In that case, the controller
parameters will be as follows:
o a a
Ki=— Kp=—a,Kp=—a—c. (10)
as as as

This controller can be used for controlling yaw and heave
motion (which will be demonstrated in this paper) as well
as other degrees of freedom.

3.1 Heading Control

Yaw motion of an underwater vehicle is usually described
by using two simple models:
e linear, (1), where z = ¢, 7 = 75, a = I, ¢ = k,
and § = 0 give model %) + k0 = 7. If unknown
parameters are estimated using the self-oscillation

method so that I, and k, are obtained using (3)
and (4), the following set of controller parameters is

obtained:
- I. - - . ..
K=" Kp=20kp="20 % (1)
as as as
e nonlinear, (2), where x = ¢, 7 = 7n, o = I,
g = 8(’(/J) = k.r w(t)’ and 6 = 0 give model




R+ e ] =

in this case parameter e varies in time and fcrr is
obtained using (5), giving the time-variant controller
parameters of a form:

K== Kp=20 Kp=2I —k,
as as as

7n. It should be noticed that

) (12)
3.2 Depth Control

Just as in the case of yaw motion control, heave motion
is usually described using the linear, (1), or the nonlinear
model, (2). However, in this case there will exist a bias
term 0 which represents the difference between the weight
and buoyancy of the vehicle. This term can be compen-
sated by adding an estimated bias § to the controller
action (8). Now, the two models can be written in the
following form:

e linear, (1), where x =z, 7 = 72z, « = m, and € = ky,
give model m,z + k2 + 6 = 7z. If unknown parame-
ters are estimated using the self-oscillation method so

that 17, k. and § are obtained using (3), (4), and (6),
the following set of controller parameters is obtained:

m; - ax - as . (13)

KI: 7KP:7mszD:7mz_kw
as as

as

e nonlinear, (2), where © = 2, 7 = 7z, « = m, and
e =€ (%) = kyw |2 ()] give model m,Z+kyy |2 (t)| 2+
0 = 7z. Again, parameter ¢ varies in time and is
obtained using (5), giving the time-variant controller
parameters of a form:
Kr="2FKp="mKp=m, koo |? 1) (14)

as as as

For both yaw and heave control cases, the controller can be
presented with a general structure shown in Fig. 3, which
will be explained after the following subsection.

3.8 Stability Analysis

It is shown in Miskovic et al. (2007b) that the self-
oscillation identification method has a certain error. The
stability of the closed-loop system could be compromised
if the identified parameters are not identical to real pro-
cess parameters (robust stability) or if the process has a
structure different than the one that is assumed (structural
stability). Because of the two reasons, we will observe
stability of the closed-loop system with regard to the
following propositions.

Proposition 1. Identified parameters & and € may differ
from real parameters o and .

Proposition 2. The process may not have the structure

which can be described with (1) or (2), but with a more
general, affine equation (15).

() + ko@ () + kyo |2 (0)] 2 (8) = 7 (1) (15)
Proposition 3. The controller is always designed under the

assumption that the process structure can be described
with (1) or (2).

Because of Proposition 1, the controller parameters are
written in the following form:

K=

gle
&
=]
w

where

- k. for linear controller
€= o || for nonlinear controller

In this case, the closed loop can be described with (17).

1
Z - — (17)
Tref  Saszsd + [ag + ag%] s2+a1s+1

It should be noticed that in the case of exact parameter
identification for values & = « and € = ¢ the model func-
tion itself is obtained. From the characteristic equation of
the system, stability of the closed loop can be determined
by using the Jury criterion, Vukic and Kuljaca (2005).
Conditions %ag > 0 and a; > 0 are always satisfied.
Remaining condition as + as 555 > 0 can be written in
the following form:

f-e< 24, (18)
as

Another condition from Jury criterion which must be

fulfilled is

1
foe<B4- ~a. (19)
ag ay

By observing the sign of the right-hand side of (19), we
get

a
: (20)
If the model function is a 3rd order Butterworth filter
than € > 0.25 and for 3rd order Bessel filter & > 0.1667.
This implies that (20) is always satisfied (see parameter
error analysis in Miskovic et al. (2007b)). This means
that the right-hand side of (19) is always greater than
0. The conclusion is that condition (19) is stricter than
condition (18) and therefore it will be used for determining
stability. Further on, from (19), if £ — ¢ < 0 the system is
always stable. If € — ¢ > 0 a constraint on the system
stability is obtained. For further calculus, ratios between
the identified parameters and real parameters are defined:

a—a«

=Po = @ =

e

mma €(-1,1)
o

yDe € (_17 1)

E—¢€

Pe = € 1
It was mentioned before that for p. < 0 the system is
always stable, therefore the assumption for further analysis
is that p. > 0. From Proposition 2 and Proposition 3
follows that there are four different cases: when linear con-
troller with parameters (11) is used with linear model (1)
and affine model (15), and when nonlinear controller with

parameters (12) is used with nonlinear model (2) and affine
model (15).

Linear model & linear controller.  For this case the model
has € = k, and the controller € = k,. From (19) follows
that (21) has to be fulfilled in order to have stable closed-
loop system.

azz _ L,
1< “3% Zl (21)
x — v



Using the ratios, (22) is obtained.
k a 11

kj Pkx a2 b
& prz+1 a3 a1 po +1

(22)

This inequality gives an elegant method of determining
stability of the closed system after the system parameters
have been identified. With estimated errors of identifica-
tion, bounds can be set on the model function in order
to ensure stability. If it is assumed that the identification
experiment is carried out in such a way that the absolute
error in determining k, is definitely smaller than 20%, we
write |pgz| < 0.2. If this is the case, than parameter « has
an absolute error lower than 10% (see parameter identifica-
tion errors in Miskovic et al. (2007b)), i.e. |p| < 0.1. The
worst case for stability condition (22) is when pg, = 0.2
and p, = —0.1, which gives (23).

k 29 —10
<z a1 a9 as

v &

aias

Affine model € linear controller.  For this case the model
has &€ = ky, |2] + k,, and the controller £ = k,. From (19)
follows that (24) has to be fulfilled in order to have stable
closed-loop system.

i 1
fo — ke < 28— —a + kyg |i]

24
P (24)

By comparing (22) and (24) we see that condition (22) is
stricter - if the stability is ensured for the previous case,
this case will also be stable. However, while designing the
controller, one should bear in mind that the differences be-
tween the identified and real parameters might be greater.

Nonlinear model & nonlinear controller.  For this case
the model has ¢ = ky, || and the controller & = k;, |Z].
From (19) follows that (25) has to be fulfilled in order to
have stable closed-loop system.
azy 1
i) < wf " a® (25)
kx$ - kxz

Using the ratios, (26) is obtained.

. A Prae +1 ((12 1 1 )

i < Bz B2 (82 2

kxm Pkza as aj Po + 1

This inequality does not provide stability condition imme-
diately after the parameters have been identified, but it
can be used to set a limit to the derivative control action
of the controller. This limitation in the controller will

ensure the stability of the system. If the same identification
errors as described before are assumed, i.e. pr, = 0.2 and

(26)

Pa = —0.1, the worst case scenario gives limitation (27).
. 2 & 9aias — 10a
|Z] < == s (27)
3 Ko ai1as

Affine model & nonlinear controller.  For this case the
model has ¢ = k;,. |Z| + k, and the controller & = k. |Z|.
From (19) follows that (28) has to be fulfilled in order to
have stable closed-loop system.

|| (km - k:m) <25 Lok,
ai

o (28)

By comparing (26) and (28) we see that condition (26)
is stricter, which means that false assumption on the

Fig. 3. The I-PD controller structure

process’ structure will not cause instability. However, in
this case one should be careful while limiting & because
the estimation errors may be larger than in the previous
case.

After having defined the stability bounds for the closed-
loop system, we can describe in detail the general con-
troller given in Fig. 3. Parameter K7, = Z—id is the part of

Kp that does not change whether the controller is linear,
as in (11), or nonlinear, as in (12). Parameter k,, equals
0 if the controller is linear. The limiter which is in the
derivation channel is here to ensure stability of the closed
loop. If the process is linear, and can be described with (1),
the limiter does not have any function since this channel
does not exist and stability is determined immediately
after calculating the controller parameters. If the process
is nonlinear, and can be described with (2), the lower limit
to the saturation block is 0, while the upper limit is given
with (26).

4. SIMULATION RESULTS

For all the simulation examples, two experiments were
performed. The first one which is used for identification
purposes, i.e. the ratio between the input to the relay
with hysteresis and hysteresis width is as close to 1.5
as possible, see Miskovic et al. (2007¢), and the second
experiment which is used for determining the model. If
the second experiment, which is less accurate than the first
one, shows that the identified parameter k, has changed
its value less than the identified parameter k,,, than the
model that best describes the system dynamics is linear. If
parameter k, changes its value more than parameter k.,
than a nonlinear model is presumed. In both experiments
the value of a should be similar, which shows that both
experiments are reliable. If the system model is known
from before than the second experiment need not be
conducted.

4.1 FALCON ROV

The real yaw model parameters of the FALCON vehicle are
shown in Table 1. The results of the two self-oscillation ex-
periments that were performed for yaw degree of freedom
are shown in Table 2.



Table 1. FALCON ROV yaw model parameters

I kr krr
80 300 10

Table 2. Self-oscillation data for FALCON
ROV yaw model identification

Xml°]  w[s7!] I, E o
zq = 10°
C =300 14 3.722 78.97 298.48 385.66
ZTq = 20° 288.3 312.97
Coso 24 2sT om0 TR

The first experiment gives ratio 2= = 1.4 and the second
X

o= =122, Since the first experlment has the ratio closer
to 1.5, it will be used for identification. The second one will
be used for model determination. Since the value of k, has
changed less in the two experiments than the value of k..,
linear yaw model of the vehicle will be presumed. However,
it should be noticed that the real vehicle dynamics also
include a k.., term. Based on these identification results, a
linear I-PD controller with parameters according to (11)
can be designed so that a 3rd order Bessel filter with
characteristic frequency wy = 1.5% behavior is achieved.
This model function is chosen so that the vehicle could
perform a 90° turn without the thrusters saturating. Using
the stability condition (23) we get 3.78 < 17.84 which
proves the stability of the designed closed loop. The
simulation results are shown in Fig. 4.

The real heave model parameters of the FALCON vehicle
are shown in Table 3. Due to the difference between the
weigh and buoyancy of the vehicle, the oscillations that
are obtained are not symmetric, as it is shown in Fig. 5
As it was explained in Section I, using the periods of
”low” and ”high” controller outputs, the bias term can be
determined by using (6). However, it should be mentioned
that responses in Fig. 5 are not in concordance to the real
FALCON ROV heave model, but have been obtained for
demonstration purposes in such a way that the difference
between weigh and buoyancy was enlarged in order to
emphasize the asymmetric response. The results of the
two self-oscillation experiments that were performed for
yaw are shown in Table 4.

l,
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Fig. 4. FALCON ROV heading response
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Fig. 5. FALCON ROV self-oscillations experiment for
determining heave model

The first experiment gives ratio <=
Xn7 _

= = 1.328 and the sec-

ond = 1.188. As in the yaw model identification case,
first experlment will be used for identification and linear
model will be assumed. Again, the real vehicle dynamics
include a k., term also. Based on these identification
results, a linear I-PD controller with parameters according
to (13) can be designed so that a 3rd order Bessel filter
with characteristic frequency wy = 0.8% behavior is
achieved. This model function is chosen so that the vehicle
could perform a 3m dive without the thrusters saturating.
Using the stability condition (23) we get 1.61 < 9.5153
which proves the stability of the designed closed loop. The
simulation results are shown in Fig. 6.

4.2 VideoRay Automarine AUV

The real yaw model parameters of the VideoRay Automa-
rine vehicle were obtained in Stipanov et al. (2007) and are
shown in Table 5. The results of the two self-oscillation ex-
periments that were performed for yaw degree of freedom
are shown in Table 6. In this case both experiments give
approximately the same ‘%’L ratios. This is usually one of
the indicators that the system has dominantly linear drag.
By comparison of the identified parameters from the two
experiments, we can conclude that since the value of k...
has changed less in the two experiments than the value of
k,, nonlinear yaw model (2) (linear drag) of the vehicle
will be presumed. Based on these identification results,
a nonlinear I-PD controller with parameters according
to (12) can be designed so that a 3rd order Bessel filter

with characteristic frequency wy = 1.5“;—d behavior is
Table 3. FALCON ROV heave model parame-
ters
Mw kw kww é

130 200 20 10

Table 4. Self-oscillation data for FALCON
ROV heave model identification

X'm[o] w[s_l] 'fhw I;w ]gww
xrqe = 0.5m
C =200 0.664 1.405 127.79 205.75 259.94
Tq = 0.5m 192.86 408.81
C =100 0.594 0.935 132.28 (1 6.3%) (1 57.3%)
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Fig. 6. FALCON ROV depth response

Table 5. VideoRay Automarine AUV yaw
model parameters

I kr krr
1.018 0 1.257

Table 6. Self-oscillation data for VideoRay
Automarine AUV yaw model identification

Xm[o] w[s_l] jT‘ i;:’l‘ ]%rr
— (9
x"o__Qlo 3512 1.32 098  0.896 1.305
zq = 20° 0.795 1.292
C=08 35.32 1.18 0.984 (1 11%) (1 1%)

achieved. This model function is chosen so that the vehicle
could perform a 90° turn without the thrusters saturating.
Using the stability condition (27) we get that ¢ < 13.4 in
order to have a stable closed loop. The simulation results
are shown in Fig. 7 and in the third graph of the same
figure it can be seen that |1)| never passes the critical value,
i.e. the limit in the controller in Fig. 3 is never reached.

5. CONCLUSION

The paper demonstrates how mathematical models ob-
tained from self-oscillations experiments can be used to
tune controllers for underwater vehicles. The proposed
controller is of I-PD type and can compensate nonlinear
behavior of the system. The controller is suitable for ma-
rine applications since the control signal is smooth. The
stability analysis of the proposed control structure gives
conditions under which the system is stable.
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