Pregled bibliografske jedinice broj: 322011
Estimates on weak solutions of semilinear hyperbolic system
Estimates on weak solutions of semilinear hyperbolic system // Conference on Applied Mathematics and Scientific Computing / J. Tambača (ur.).
Zagreb, 2007. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 322011 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Estimates on weak solutions of semilinear hyperbolic system
Autori
Burazin, Krešimir
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Conference on Applied Mathematics and Scientific Computing
/ J. Tambača - Zagreb, 2007
Skup
Fifth Conference on Applied Mathematics and Scientific Computing
Mjesto i datum
Brijuni, Hrvatska, 09.07.2007. - 13.07.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
semilinear hyperbolic systems; discrete models for Boltzmann's equation
Sažetak
We consider the Cauchy problem for a semilinear hyperbolic system of the type $$ \left\{; ; \begin{; ; array}; ; {; ; l}; ; \partial _t {; ; \sf u}; ; (t, {; ; \bf x}; ; ) +\sum_{; ; k=1}; ; ^d {; ; \bf A}; ; ^k(t, {; ; \bf x}; ; ) \partial _{; ; k}; ; {; ; \sf u}; ; (t, {; ; \bf x}; ; ) ={; ; \sf f}; ; (t, {; ; \bf x}; ; , {; ; \sf u}; ; (t, {; ; \bf x}; ; ))\\ {; ; \sf u}; ; (0, \cdot)={; ; \sf v}; ; \end{; ; array}; ; \, , \right. $$ with each matrix function ${; ; \bf A}; ; ^k$ being diagonal, bounded and locally Lipschitz in ${; ; \bf x}; ; $. Discrete models for the Boltzmann equation furnish examples of such systems. For bounded initial data, and right hand side that is locally Lipschitz in ${; ; \sf u}; ; $, local existence and uniqueness results in ${; ; \rm L}; ; ^\infty$ are well known, together with some estimates on weak solutions. % However, these estimates are not precise enough for some homogenisation problems. More precise estimates for weak solutions of the above Cauchy problem will be given, supplemented by estimates on the maximal time of existence for the solution. The local existence and uniqueness in ${; ; \rm L}; ; ^p$ setting ($1< p<\infty$) will be addressed as well.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372787-2795 - Titrajuća rješenja parcijalnih diferencijalnih jednadžbi (Antonić, Nenad, MZOS ) ( CroRIS)
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Profili:
Krešimir Burazin
(autor)