Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 320419

Representations of certain non-rational vertex operator algebras of affine type


Adamović, Dražen; Perše, Ozren
Representations of certain non-rational vertex operator algebras of affine type // Journal of Algebra, 319 (2008), 6; 2434-2450 doi:10.1016/j.jalgebra.2008.01.003 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 320419 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Representations of certain non-rational vertex operator algebras of affine type

Autori
Adamović, Dražen ; Perše, Ozren

Izvornik
Journal of Algebra (0021-8693) 319 (2008), 6; 2434-2450

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
vertex operator algebra; generalized Verma module; singular vectors; Affine Kac– Moody algebra; Zhu's algebra; category O

Sažetak
In this paper we study a series of vertex operator algebras of integer level associated to the affine Lie algebra $A_l ^1$. These vertex operator algebras are constructed by using the explicit construction of certain singular vectors in the universal affine vertex operator algebra $N_l(n− 2, 0)$ at the integer level. In the case n=1 or l=2, we explicitly determine Zhu's algebras and classify all irreducible modules in the category. In the case l=2, we show that the vertex operator algebra $N_2(n− 2, 0)$ contains two linearly independent singular vectors of the same conformal weight.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
037-0372794-2806 - Algebre verteks-operatora i beskonačno dimenzionalne Liejeve algebre (Primc, Mirko, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Dražen Adamović (autor)

Avatar Url Ozren Perše (autor)

Poveznice na cjeloviti tekst rada:

doi dx.doi.org

Citiraj ovu publikaciju:

Adamović, Dražen; Perše, Ozren
Representations of certain non-rational vertex operator algebras of affine type // Journal of Algebra, 319 (2008), 6; 2434-2450 doi:10.1016/j.jalgebra.2008.01.003 (međunarodna recenzija, članak, znanstveni)
Adamović, D. & Perše, O. (2008) Representations of certain non-rational vertex operator algebras of affine type. Journal of Algebra, 319 (6), 2434-2450 doi:10.1016/j.jalgebra.2008.01.003.
@article{article, author = {Adamovi\'{c}, Dra\v{z}en and Per\v{s}e, Ozren}, year = {2008}, pages = {2434-2450}, DOI = {10.1016/j.jalgebra.2008.01.003}, keywords = {vertex operator algebra, generalized Verma module, singular vectors, Affine Kac and \#8211, Moody algebra, Zhu's algebra, category O}, journal = {Journal of Algebra}, doi = {10.1016/j.jalgebra.2008.01.003}, volume = {319}, number = {6}, issn = {0021-8693}, title = {Representations of certain non-rational vertex operator algebras of affine type}, keyword = {vertex operator algebra, generalized Verma module, singular vectors, Affine Kac and \#8211, Moody algebra, Zhu's algebra, category O} }
@article{article, author = {Adamovi\'{c}, Dra\v{z}en and Per\v{s}e, Ozren}, year = {2008}, pages = {2434-2450}, DOI = {10.1016/j.jalgebra.2008.01.003}, keywords = {vertex operator algebra, generalized Verma module, singular vectors, Affine Kac and \#8211, Moody algebra, Zhu's algebra, category O}, journal = {Journal of Algebra}, doi = {10.1016/j.jalgebra.2008.01.003}, volume = {319}, number = {6}, issn = {0021-8693}, title = {Representations of certain non-rational vertex operator algebras of affine type}, keyword = {vertex operator algebra, generalized Verma module, singular vectors, Affine Kac and \#8211, Moody algebra, Zhu's algebra, category O} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Mathematical Reviews
  • Zentralblatt fur Mathematik


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font