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Abstract—This paper deals with an analysis of 
applicability, capabilities, benefits and pitfalls of using 
a virtual potential field approach to autonomously 
planning trajectories in non-communicating 
autonomous underwater vehicles (AUV-s). Virtual 
potentials represent an approach to this problem with 
cross-layer design features. Examples of different 
layers of control that can be achieved with the same 
fundamental approach are: obstacle-avoidance, 
energy-optimal trajectories, forming up with other 
moving agents, controlled formation fragmentation 
into well-posed sub-formation etc. This paper shows, 
on the basis of extensive simulated experiments, that 
such a trajectory planner based on virtual potentials, 
guarantees good extendibility, scalability and 
performance in a hard-real-time hardware-in-the-
loop system. 

I. INTRODUCTION 
Trajectory planning for autonomous underwater vehicles 
(AUV) is a prolific field of research. Challenges arising 
in this field arise both from the typical engineering and 
the constraints it poses on the capabilities of individual 
AUVs, and by the features of the environment the AUV 
executes its missions in. Typical trajectory-planning 
problems are further escalated when, rather than a single 
AUV, a need arises to compute in an online fashion 
trajectories of multiple AUVs cooperating in the same 
theater of operations. A key feature of such a submerged 
theater of operations is the lack of reliable, high-
bandwidth communication. This significantly limits the 
methodologies to be used. Also, it imposes severe 
practical, implementation-wise constraints on the 
algorithms implemented inside a single AUV that 
statistically arrive at some estimates of the state of other 
AUVs from sensory observation of their action in the 
theater. Since no communication can take place between 
any single AUV and a supervisory command, control and 
communication center that would centralize the total 
information necessary for optimal trajectory planning, the 
autonomy of a trajectory planning method implemented 
algorithmically aboard every single AUV must be 
complete. 
 

As stated, apart from self-observation and measurement 
of internal AUV’s states, in such a scenario there is need 
for measurement and observation from which the internal 
states of cooperating AUVs can be deduced. In addition 
to that, the process of deduction itself usually consists of 
high-processor-commitment operations: nonlinear filte-
ring of, applying transforms to, and performing 
regression and classification on signals arriving from 
slow-refresh-rate sensors. Therefore the trajectory 
planner algorithm must take into account and manage 
(i.e. by multithreading and multitasking) the 
synchronicity between low-processor-commitment 
trajectory calculations, high-processor-commitment 
feature extraction and no-processor-commitment but 
large sample time sensing. 
 

Section 2 explains how the virtual potential method was 
implemented in order to deal, in what the authors think is, 
an optimal approach, with the stated conditions, 
constraints, problems and features. Section 3 presents the 
results of computer-run simulations of this setup. For 
purposes of proving the concept, and without influencing 
the implementation in mind for this method in its final 
embedded form, the problem space is constrained to 2D. 
Through inspection of simulation and follow-up redesign 
of the method, stability problems are resolved and local 
minimum avoidance, obstacle- and collision-avoidance, 
and a limited amount of formation behavior are achieved. 
The constraint of the problem space to 2D doesn’t impact 
the applicability of the algorithms arrived at in this section 
when the predominant modes of usage and mission 
profiles of actual AUVs are taken into account. These 
consist of craft being given navigation tasks at either a 
constant depth, or with depth controlled by a separate 
decoupled control loop altogether. Section 4 gives closing 
comments, plans for further research and surmises our 
findings. 

II. THE VIRTUAL POTENTIALS METHOD 
The design of a successful trajectory planner 
implemented on non-communicating AUVs that might at 
some point in time be applied to coordinated multi-
vehicular missions must obey the following requirements: 
 
1. stability (finiteness of the planned trajectory in the 

time and space domains), 



2. propulsion energy-optimality or parsimony, 
3. autonomity, without presupposing communication of 

internal states between coordinated AUVs, but rather 
reliance on outside observation of their actions in the 
theater of operations, 

4. explicit addressing, avoidance or resolution of 
synchronization issues between measurement and 
feature extraction off of the dominant sensor, and the 
control algorithm in the code implementation of the 
algorithm 

 
Currently pursued research efforts of the global control 
engineering community fall predominantly (with 
significant amounts of overlap and ambiguity) into the 
following methodologies: 
 
1. Approaches exploiting graph theory, focusing on 

issues of formational stability, addressed in work 
such as [1], [2], [3], [4]. 

2. Virtual potential method approaches, pursued in [5], 
[6], [7], [8]. 

3. Iterative methods in the broadest and most general 
sense, based on a plethora of techniques (receding 
horizon MPC, mixed integer programming, dynamic 
programming, or simulation of state machines, to 
name but the few), covered extensively in [9], [10], 
[11], [12], [13]. 

 
The authors have also considered the actual experimental 
setup based on the relatively low-cost VideoRay Pro II 
ROV submersible converted into an AUV setup. Taking 
into account all of the above, a method, designed from 
ground up, from the class of virtual potential-based 
approaches was chosen. In addition to fulfilling all the 
stated design requirements, virtual potentials-based 
methods, such as the one described in this paper, also 
have the following advantages: 
 
1. The method is intuitive and easily understood even 

by undergraduate control engineering students, 
2. The method is at the worst border-line stable (i.e. 

proof of BIBO stability is trivial), since it is based on 
physical processes, thus obeying the 2nd Law of 
Thermodynamics, 

3. The method is formally propulsion energy-optimal 
(in the worst case parsimonious rather than optimal 
due to implementation-driven trade-offs and 
caveats), due to the same reason stated in 2, 

4. The method possesses a large number of method-
specific independently settable parameters; These 
parameters’ values do not arise from physical 
constraints on the trajectory planning problem or the 
nature and engineering of the AUV used; Methods 
that have this characteristic usually are a good 
foundation for this type of research, exploring 
optimality, 

5. The method has cross-layer-design features; This 
allows a large set of behaviors to be implicitly 
programmed in (even at a later point, by 
manipulating parameters and data, rather than the 

algorithm) without large coding overhead or 
programmatic hybridization of the implementation 
code, 

6. The method lends itself naturally to object-oriented 
programming implementation;  The method is 
encapsulated into human-readable, transparent and 
therefore easily extendible code, 

7. The method scales well and its complexity behaves 
orderly. The complexity increases linearly with the 
addition of additional agents or obstacles, and 
geometrically with the addition of a dimension of the 
problem space, both in terms of the number of sub-
function calls and processing time. 

 
The method itself is based on determining the gradient of 
a virtual potential field. The potential field subjected to 
the numerical calculation of the gradient in the vicinity of 
the AUV is given by adding influences of all perceived 
features of the theater of operations. The comprising 
potential levels are in turn given or dictated as 
evaluations of potential distribution functions (PDFs) 
attributed to every type of feature – different classes of 
obstacles, other agents, goal- or way-point. The merits 
and construction of this method were first proposed in 
[8]. The definitions of PDFs for every class of obstacle 
arising from classification of the observed theater of 
operations are implemented locally as a library of 
functions aboard an AUV. The method itself is described 
by (1 – 7). 

           
 ( ) ( ) ( )( ), obj i

i

E p k f p k= ∑  (1) 

Where: 
- E is the virtual potential, 
- fobj(i) are the PDFs, functions defining potentials over the 
(x, y) vector-space, arising due to the existence of all 
collision-critical, motion-relevant objects in the sensed 
portion of the theater of operations, 
- ( ) ( ) ( )( ),p k x k y k= is the position vector at which 
the potential E is evaluated at time index k. Subsequently 
subscript indices to p  will designate more specific points 
in the (x, y) vector-space. 
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Where: 
- ( )F k  is the directional controlling force reproducing 
the trajectory at time index k, 
- ( )AUVp k is the position vector of the AUV at time index 
k, 
- ( )ip kε  is the position vector of the i-th out of the total 
of nγ  equally radially distributed sample points in the 
ε-vicinity of the AUV, defined in (3) and (4). 



- maxF
⋅⎡ ⎤⎢ ⎥ is the upper limit of the ( )F k ’s modulus to Fmax, 

an implementation-specific parameter (depending on the 
AUV). To facilitate clarity, heretofore the operation of 
applying the upper limit on the modulus of a vector v  
will be written as ( )( ), maxbound v k v  
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Where: 
- εAUV is the spatial resolution, also called granularity of 
the numerical sampling of the gradient of E(x,y), and is a 
method-specific independent parameter,  
- nγ, the angular resolution, is a method-specific 
independent parameter. 
The ( )v k , trajectory set-velocity for the time instance k, 
is arrived at by using the bilinear numerical integration of 
(2): 

 ( ) ( ) ( )( ) ( )1 1 ,
2 max

T
v k bound F k F k v k v= + − + −⎛ ⎞

⎜ ⎟
⎝ ⎠

 (5) 

Where: 
- vmax is an implementation-specific (AUV dependent) 

parameter 
 
The control inputs of “set forward speed” vset and “set 
course” ψset are thus easily as the argument and modulus 
of (5): 
 
 ( ) ( )( )argset k v kψ =  (6) 
 
 ( ) ( )setv k v k=  (7) 
 
This, tied into a closed time-loop form (a programmatic 
loop) completes the kinematic level of the algorithm. In 
addition to the latter, the final control law or algorithm 
must also include feedbacks or updates to the dataset 
representing the trajectory-planning relevant model of the 
theater of operations, and a schema of addressing the 
dynamic modes and behaviors of the craft itself.  The 
former must in the case of virtual potential method occur 
through some type of nonlinear or stochastic filtering or 
other feature extraction techniques performed on sensed 
signals. Such an algorithm ensures dynamic, reactive 
trajectory planning for an AUV in a nondeterministic, 
unstructured, dynamically changing environment.  
 
However, significant exploration of performance of the 
kinematic level of the algorithm must be performed to 
ensure the optimization of the values of the many 
introduced method-specific independently settable 
programmatic parameters (the A±, nγ, εAUV etc). Only 
when optimality and meeting of all formal requirements 

is assured at the kinematic level, further modifications, 
caveats and trade-offs needed to compensate or subsume 
non-ideal or non-linear craft dynamics can be 
implemented with any hopes of maintaining satisfactory 
performance of the algorithm. 
 
For simulation purposes, the position of the AUV in the 
following sample time is evaluated by numeric bilinear 
integration of the set velocity vector, in equation 8. 
 

         ( ) ( ) ( )( ) ( )1 1 1
2AUV AUV

T
p k v k v k p k+ = + − + − (8) 

The theater of operations is represented as a set of a 
varied number of objects of one of three classes, each 
represented by a distinctive PDF: 
 
1. a rectangular obstacle PDF, forth 
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Where: 
- A+ is the repulsiveness of the obstacle (positive 
potentials are attributed to repulsive action), a method-
specific independent parameter, 
- R(·) is the matrix executing the rotation, in two 
dimensions, about the origin of the coordinatae system, of 
the vector to the right of it, 
- φ is the (approximate) actual sensed angle of rotation of 
the detected orthogonal obstacle measured from the 
positive x-semiaxis of the global coordinate system of the 
simulation, 
- cenp is the (approximate) actual sensed vector of 
coordinates of the obstacle’s center, 
- the ...⋅ ⋅  signifies element-wise absolute value, 
- the ·n is the element-wise n-th power. 
- ·> is the element-wise pseudo-logical operation >, 
mapping to the N0 subset {0, 1} by assuming {┴ ≡ 0, 
┬ ≡ 1} 
- a, b are (approximate) actual sensed semi-dimensions 
along the x- and y-axes of the obstacle-centric coordinate 
system. 
 
2. a circular obstacle PDF, fcirc 

 ( ) ( )2
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− −= −  (12) 
Where: 
- r0 is the radius of the obstacle. 
 



3. The goal-point PDF, fGP 
 

 ( )
2

22e
GPp p

GPf p A σ

−
−

−= − ⋅  (13) 
Where: 
- GPp are the coordinates of the goal-point 
- σ is the attractor reach of the goal-point, a method-
specific independent parameter. 
- A– is the attractiveness of the goal-point, a method-
specific independent parameter. 
 
An example of the repulsive potential present in the 
theater of operations on account of an obstacle is given in 
figure 1, featuring a rectangular obstacle. 
 

 
Figure 1: Example of a rectangular obstacle 

 
 

III. QUALITATIVE ASSESSMENT OF THE TRAJECTORY 
PLANNER AND NECESSARY MODIFICATIONS  

 
Figure 2 gives insight into the limited (oscillatory) BIBO 
stability of the algorithm developed in (1 – 7) in section 
2. 
 

 
Figure 2: Oscillatory BIBO stability of the algorithm tested with 1 

centrally positioned goal-point. 
 
The precessive oscillation is present due to the lack of 
siphons for the overall kinetic energy in the system. In 
order to assure asymptotic static stability a revision 
including some mode of siphoning or degrading kynetic 
energy needs to be explicitly added to the algorithm. This 
is realized by introducing virtual viscose friction 
according to (14), thus modifying (2) to (15). 

 

 ( ) ( )1fricF k v kξ= ⋅ − ∠ ( )( )arg 1v kπ + −  (14) 
 

 ( )
2

22e
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−
−
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Where: 
- μ is the virtual viscose friction coefficient, a method-
specific independent parameter. 
 
A repeated setup of the stability test with μ = 0.4, 
produces asymptotically stable and finite trajectory 
planned according to figure 3. 
 

 
Figure 3: Asymptotic BIBO stability of the revised algorithm 

 
A slight static error of positioning is introduced. 
However, since having a different control architecture for 
controlling most AUVs „in the small“ cannot be avoided, 
AUVs being nonlinear control objects, this is not a 
critical consideration. An example of a „small scale“ 
control architecture that can function with this „large 
scale“ trajectory planner is being developed by Mišković 
et al. [14]. 
 
An experiment with a moderately cluttered theater of 
operations was performed in order to test the algorithm 
for robustness in case of clutter. The simulation results 
are presented in figure 4. 
 

 
Figure 4: Testing the algorithm to cluttered operating conditions 

 
The experiment demonstrates a flaw of virtual potential 
methods in general. The trajectory apriori-unpredictably 
terminates in a local minimum. Analytical treatment of 
this problem is, depending on the PDFs considered, and 



features of the dataset representing all potential 
influences, very difficult. Even numerical methods often 
lead to NP-hard computational problems or in the best-
case scenario to algorithms that perform poorly in real-
time. Therefore, the algorithm was extended with a 
hybridized logic scheme whereby agents are „preturbed 
out of“ local minima. 
 
In the algorithm finally developed the nature of the 
perturbation was a temporary „ghost“ goal-point 
replacing for a given period of time the original operator-
set or preprogrammed goal-point. This goal-point is reset 
by the AUV doing the planning of its own trajectory, 
much like the proverbial „carrot on a stick“. The principle 
by which its position is injected into the AUV-local 
dataset describing the theater of operations follows from 
the position of the „masking“ obstacle and the original 
goal-point according to figure 5. The mathematical 
description is given by (16) and (17). 
 

 
Figure 5: Schematic of the „ghost goal-point“ method of 

circumnavigating local minima 
 
The (x, y) coordinates of the „ghost“ goal-point are 
calculated according to: 
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Where: 
- (x, y) is the current position of the AUV 
- (xGP, yGP) is the global goal-point 
- (xGGP, yGGP) is the „ghost“ goal-point serving to perturb 
the AUV from the local minimum 
- d is the distance (x, y) – (xGP, yGP) 
- λ is the tunable fraction (method-specific parameter) of 
the length d governing the position of the normal 
- α is the tunable multiple (method-specific parameter) of 
the length d dictating the offset of the „ghost“ goal-point 
from the connection (x, y) – (xGP, yGP) 
- ρ is the random binary value deciding the sidedness of 
the offset  

- R(φ) is the rotation of the position vector by obstacle 
pose angle φ 
- v is the unit-vector in the direction from (x, y) to 
(xGP, yGP) 
 
The „ghost“ goal-point is removed from the dataset once 
the AUV is within its εghost-vicinity. In most realistically 
set up environments, an AUV will not again encounter  a 
local minima travelling from (x, y) to (xGGP, yGGP). 
However, if it does, the process of adding „intermediary 
ghost“ goal-points can be stacked. 
 
Extending the trajectory-planning algorithm to include 
„ghost“ goal-points, and running it in the same 
simulational setup displayed in figure 4 results in the 
trajectory planned below: 
 

 
Figure 6: Recreated trajectory planning simulation in a relatively 

cluttered theater of operation with the local minima avoidance scheme 
implemented 

 
Implementing this kinematic trajectory-planner on 
multiple simulated AUVs gives simulation results 
presented in figure 7. In this experiment, for each AUV 
planning its trajectory, other AUVs are classified as 
circular obstacles with {r0 = 0.5, A+ = 2.5}. 
 

 
Figure 7: Simulation of clustering / forming up of multiple AUVs 

 
It is plainly obvious that even without including explicit 
equations and modifications of the control law to include 
forming-up and clustering of the AUVs, a certain level of 
formation-like behavior is achieved. This is especially 
satisfactory when it is considered that from the point of 
view of code carried aboard an AUV, no further changes 
were necessary. Neither was the code of the algorithm 



changed or upgraded, nor was the library of PDFs 
expanded with additional or more complex functions. 
 
However, it is also plainly obvious that the formations 
achieved are not robust. The regularity of the formation is 
not assured, but rather strongly influenced by the 
presence of obstacles near the common goal-point. This 
influences and distorts equipotentials of the fGP PDF. 
Since algorithms aboard every AUV seek to uniformly 
distribute them at points equidistant to each other along a 
common equiopotential, distortion of equipotentials from 
circles results in non-uniform and/or irregular formations. 
 

IV CONCLUSIONS AND FURTHER WORK 
 
This paper gives a description of a kinematic algorithm 
for trajectory planning based on the numerical evaluation 
of the gradient of a virtual potential field.  The paper 
provides insights critical to the actual implementation of 
a virtual potential method-based dynamic trajectory 
planner for AUVs, based on extensive simulations at the 
kinematic level. This planner is an example of an 
approach based on simple and easily encapsulated 
numerical mathematical calculations. The support for all 
mathematical calculations featured by the method is 
already coded into assembly-language level firmware in 
contemporary embedded processors. The stability and the 
energetic parsimony of the trajectories produced by the 
planner was demonstrated in simulations. A mechanism 
for reducing the number of cases in which possible 
occurring local minima might foil the trajectory planning 
is proposed and tested through simulation. Also, it is 
shown by simulation that the algorithm already features 
relatively non-robust clustering behavior when run in 
multiple AUVs within the same theater of operations. 
However, due to the lack of modifications to the data 
initializing the method the behavior is environmentally 
dependent and heavily relies on the structure of the 
theater of operations. However, it should be kept in mind 
that this behavior emerges without any communication of 
state between the algorithms run on separate platforms. 
Therefore, the authors believe that further exploring how 
the virtual potential method can be used to tack 
coordinated control problems holds decisive promise for 
the future. 
 
Further work on the algorithm will be concentrated on 
several fronts. One is the actual software design. The 
design will have to tackle the specifics of the 
implementation in one of the high-level languages which 
are real-time-efficient and fast at both compile-time and 
run-time. In that respect, the decisive criterion for the 
implemented design approach will be hardware-in-the-
loop operation. Thus, the algorithm here presented in 
simulational form will be able to control a real AUV (or 
an ROV run by a top-side computer). 
 

Another advance is the exploration of possible extensions 
of PDF classes. Separate classes of PDFs need to be 
implemented, to be used to represent cooperating AUVs. 
These PDFs should be radially non-monotonic, i.e. 
should feature local minima at certain geometric 
configurations in the foreign agent-centric coordinate 
system (i.e. that of the other perceived AUV, not the local 
one). It is supposed that, based on equivalent problems in 
crystalline physics, a scheme supporting the appearance 
of formations robust to other features of the environment, 
is likely to emerge. 
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