Pregled bibliografske jedinice broj: 304892
Using Ontologies for Measuring Semantic Similarity in Data Warehouse Schema Matching Process
Using Ontologies for Measuring Semantic Similarity in Data Warehouse Schema Matching Process // Proceedings of the 9th International Conference on Telecommunications (ConTEL 2007) / Car, Željka ; Kušek, Mario (ur.).
Zagreb: Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2007. str. 227-234 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 304892 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Using Ontologies for Measuring Semantic Similarity in Data Warehouse Schema Matching Process
Autori
Banek, Marko ; Vrdoljak, Boris ; Tjoa, A Min
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 9th International Conference on Telecommunications (ConTEL 2007)
/ Car, Željka ; Kušek, Mario - Zagreb : Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2007, 227-234
ISBN
978-953-184-110-8
Skup
9th International Conference on Telecommunications (ConTEL 2007)
Mjesto i datum
Zagreb, Hrvatska, 13.06.2007. - 15.06.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
semantic similarity; data warehouse; data warehouse integration; schema matching; ontology; OWL; WordNet
Sažetak
The key step of data warehouse integration is the construction of mappings that link mutually compatible components of data warehouse schemas: dimensions, aggregation levels, attributes and facts. In order to perform the integration process in a semi-automated manner, we must define similarity functions that compare the names and substructures of those structure elements. During the last decade, many approaches to measuring semantic similarity between lexical terms have been introduced, most of them based either on the taxonomy of WordNet, a large lexical and thesaurus database of English language, or on the previously measured language statistic corpus. This paper presents a novel semantic similarity technique, based on edge counting, which combines WordNet and domain ontologies written in OWL and is implemented as a Java software. Ontologies are designed by domain experts and thus provide a better and more trustworthy source for calculating similarity, and the fact that the terms are related closer than in WordNet results in a higher similarity.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
036-0361983-2012 - Semantička integracija heterogenih izvorišta podataka (Baranović, Mirta, MZO ) ( CroRIS)
036-0362027-1638 - Umrežena ekonomija (Skočir, Zoran, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb