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Equivariant monads and equivariant lifts versus a 2-category of
distributive laws

Zoran Škoda (preliminary notes)

Fix a monoidal category C. The 2-category of monads in the 2-category
of C-actegories, colax C-equivarant functors, and C-equivariant natural trans-
formations of colax functors, may be recast in terms of pairs consisting of a
usual monad and a distributive law between the monad and the action of C,
morphisms of monads respecting the distributive law, and transformations of
monads satisfying some compatibility with the actions and distributive laws in-
volved. The monads in this picture may be generalized to actions of monoidal
categories, and actions of PRO-s in particular. If C is a PRO as well, then
in special cases one gets various distributive laws of a given classical type,
for example between a comonad and an endofunctor or between a monad
and a comonad. The usual pentagons are in general replaced by multigons,
and there are also “mixed” multigons involving two distinct distributive laws.
Beck’s bijection between the distributive laws and lifts of one monad to the
Eilenberg-Moore category of another monad is here extended to an isomor-
phism of 2-categories. The lifts of maps of above mentioned pairs are colax
C-equivariant. We finish with a short treatment of relative distributive laws
between two pseudoalgebra structures which are relative with respect to the
distributivity of two pseudomonads involved, what gives a hint toward the
generalizations.

1. Throughout the paper, C will be a fixed monoidal category with a monoidal product
⊗, a unit object 1, the associativity coherence isomorphisms aX,Y,Z : X ⊗ (Y ⊗ Z) →

(X ⊗ Y ) ⊗ Z, natural in X,Y, Z ∈ ObC, the left unit coherence r : IdC⇒IdC ⊗ 1 and the
right unit coherence l : IdC⇒1 ⊗ IdC satisfying for all A,B,C,D ∈ ObC the MacLane
pentagon aA,B,C⊗D ◦aA⊗B,C,D ◦ (aA,B,C⊗D) = (A⊗aB,C,D)◦aA,B⊗C,D and unit triangle
coherence relations a1,A,B ◦ lA⊗B = lA⊗B and rA⊗B = aA,B,1 ◦ (A⊗ rB). A left coherent
action of C on a category N is a coherent monoidal functor L : C → EndN where EndC is
strict monoidal with respect to the composition of endofunctors. Equivalently, a C-action
will be given by a bifunctor ♦ : C ×N → N , natural isomorphisms Ψ : ( ⊗ )♦ ⇒ ♦( ♦ )
and u : IdN⇒1♦IdN satisfying for allQ,Q′, Q′′ ∈ Ob C andN ∈ ObN the action pentagon
coherence ΨQ,Q′,Q′′♦N ◦ ΨQ⊗Q′,Q′′,N ◦ (aQ,Q′,Q′′♦N) = (Q♦ΨQ′,Q′′,N ) ◦ ΨQ,Q′⊗Q′′,N and
unit action coherences uQ♦N ◦ Ψ1,Q,N = lQ♦N and (Q♦uN ) ◦ ΨQ,1,N = rQ♦N . A C-
actegory is a category N equipped with a coherent action ♦,Ψ, u of C.

2. A colax C-equivariant functor of C-actegories (F, ζ) : (M,♦M,ΨM, uM) →

(N ,♦N ,ΨN , uN ) is a usual functor F : M → N with a binatural transformation of
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bifunctors ζ : F ( ♦M )⇒ ♦̃NF ( ) : C ×M⇒N , so that

F (1♦MM)
ζ1,M

//

F (uM
M ) %%LLLLLLLLLL

1♦NF (M)

uN
F (M)yyrrrrrrrrrr

F (M)

(1)

F ((A⊗B)♦MM)
ζ(A⊗B)♦M

//

F (ΨM
A,B,M )

��

(A⊗B)♦NF (M)

ΨN
A,B,F (M)

��
F (A♦M(B♦NM))

ζA,B♦M
// A♦NF (B♦MM)

A♦ζB,N
// A♦N (B♦NF (M))

(2)

C-actegories and colax C-equivariant functors make a category C−actc1: given (F, ζF ) :
N → P and (G, ζG) : M → N their composition is (F, ζF ) ◦ (G, ζG) := (F ◦ G, ζF◦G) :
M → P where ζF◦G

C,M := ζFC,GM ◦ F (ζC,M ) : F (G(C♦MM))⇒C♦PF (G(M)).

3. A C-equivariant natural transformation of colax C-equivariant functors
α : (F, ζF )⇒(H, ζH) : M → N is a natural transformation of underlying ordinary functors
α : F⇒G such that for all C ∈ C,M ∈M the following square commutes:

F (C♦MM)
ζF

C,M
//

αC♦M

��

C♦NFM

C♦αM

��
G(C♦MM)

ζG
C,M

// C♦NGM

(3)

The usual transformation of usual functors obtained as a vertical or a horizontal composi-
tion of C-equivariant natural transformations of colax C-functors is C-equivariant. Thus we
obtain a strict 2-category C−actc which has all cartesian products, namely the usual prod-
ucts in Cat equipped with the diagonal C-action, e.g. for binary products of C-actegories
C♦(M,N) = (C♦M,C♦N), and for C-functors (F, ζF ) × (G, ζG) = (F ×G, ζF × ζG).

4. Let G be an endofunctor on a category M. For a given monad T = (T, µ, η) with
a multiplication µ : TT⇒T and unit ν : Id⇒T a distributive law between G and T is a
natural transformation l : GT⇒TG such that

GTT

Gµ

��

lT // TGT
Tl // TTG

µG

��
GT

l // TG

(D1)

commutes and l ◦Gη = ηG : G⇒TG. A lift of an endofunctor (resp. (co)monad) G to a
category C equipped with a functor U to M is an endofunctor (resp. (co)monad) G̃ such
that UG̃ = GU (and obvious additonal conditions for the (co)monad case). The basic
motivating fact for this definition states that the distributive laws between G and T are
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in a canonical bijection with the lifts of endofunctor G to the Eilenberg-Moore category
MT of modules (M, ν) with respect to the forgetful functor U : (M, ν) 7→ M (as usual,
M ∈ ObM and ν : TM → M). Often G is also a (co)monad. Then, two additional
axioms are required for l which ensure that G̃ is also a (co)monad. Modulo quoting this
very fact, no proof in this paper needs repair when replacing distributive laws and lifts
where G is endofunctor, with the version where G is a (co)monad.

5. In every strict 2-category, endo-1-cells of a fixed object and their natural trans-
formations form a strict monoidal category, with the horizontal composition as the tensor
product. In particular, EndC(M) := C−actc(M,M) is a strict monoidal category. If
T̃ = (T, ζ) is an object in End(M), that is a colax C-equivariant endofunctor, then its
tensor square is T̃ T̃ := (T ◦ T, ζT ◦ T (ζ)). Here (ζT ◦ T (ζ))C,M := ζC,TM ◦ T (ζC,M ) :

TT (C♦M)⇒C♦TTM . Let now T̃ = (T̃ , µ, η) be a monad in C−actc. Our next aim is
to decipher these data in terms of data in Cat. T̃ = (T, ζ) is a colax C-equivariant endo-
functor hence the two diagrams (1,2) commute with T in place of F . The multiplication
µ : T̃ T̃⇒T̃ is a natural transformation µ : TT⇒T , whose C-equivariance says that (3)
commutes for α = µ, F = TT , G = T , ζF = ζT ◦ T (ζ) and ζG = ζ. From this we obtain
the following pentagon

TT (C♦M)
T (ζC,M )

//

µC♦M

��

T (C♦TM)
ζC,T M

// C♦TTM

C♦µM

��
T (C♦M)

ζC,M
// C♦TM

(4)

The unit η : (IdM, IdId)⇒(T, ζ) is a natural tranformation η : Id → T and its C-
equivariance means that (3) commutes for F = IdM, ζF = IdId, G = T and ζG = ζ

what reduces to the triangle

C♦M

ηC♦M

yysssss
ssss

s
T (ηM )

$$J
JJ

JJ
JJ

JJ
J

T (C♦M)
ζC,M

// C♦TM

(5)

The identities for µ and η (monad associativity µ ◦T (µ) = µ ◦µT and unit axioms) simply
say that the underlying endofunctor has a structure of a monad.

Proposition. A monad T̃ = (T̃ , µ, η) in C−actc is the same as a usual monad T =
(T, µ, η) together with a binatural transformation ζ : T ( ♦ )⇒ ♦T ( ), satisfying (1),(2)
with T = F and (4),(5), i.e. the distributive law between C-action and T.

6. More generally, we may be given two actions of monoidal categories C and D on
the same category M. The distributive law between these two actions will be a binatural
transformation of bifunctors D♦(C♦M)⇒C♦(D♦M) satisfying again some coherences;
this general case will be studied elsewhere and, in the case of one left and one right action
also in [9]. Let us now recall the classical case.

Let G be an endofunctor on a category M. For a given monad T = (T, µ, η) with a
multiplication µ : TT⇒T and unit ν : Id⇒T a distributive law between G and T is a
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natural transformation l : GT⇒TG such that

GTT

Gµ

��

lT // TGT
Tl // TTG

µG

��
GT

l // TG

(D1)

commutes and l ◦Gη = ηG : G⇒TG. A lift of an endofunctor (resp. (co)monad) G to a
category C equipped with a functor U to M is an endofunctor (resp. (co)monad) G̃ such
that UG̃ = GU (and obvious additonal conditions for the (co)monad case). The basic
motivating fact for this definition states that the distributive laws between G and T are
in a canonical bijection with the lifts of endofunctor G to the Eilenberg-Moore category
MT of modules (M, ν) with respect to the forgetful functor U : (M, ν) 7→ M (as usual,
M ∈ ObM and ν : TM → M). Often G is also a (co)monad. Then, two additional
axioms are required for l which ensure that G̃ is also a (co)monad. The generalizations
of these additional axioms for the case of PRO are also studied below. We start with the
easier partial case of monads.

7. A map of monads in a fixed category M is a natural transformation α : T ⇒ T ′

for which α ◦ µT = µT ′ and µ ◦ Tη = µ ◦ ηT = id : T ⇒ T . Every map of monads
α induces a functor of Eilenberg-Moore categories Hα : MT

′

→ MT by the formula
Hα(M, ν′) = (M, ν′ ◦ αM ). Conversely, if a functor H : MT

′

→ MT is such that
UH = U ′, where U,U ′ are forgetful and F, F ′ are free T -algebra functors, then H induces
a natural transformation αH : T ⇒ T ′ given by the composition

T
Tη′

−→ TT ′ = UFU ′F ′ = UFUHF ′ UǫHF
′

−→ UHF ′ = U ′F ′ = T ′. (6)

These two rules are mutual inverses.

8. More generally, given monad S in category M and monad T in category N , a map
of monads (K,α) : T → S is a pair of a functor K : M → N and natural transformation
α : TK⇒KS : M → N such that

TTK

µTK

��

Tα // TKS
αS // KSS

KµS

��
TK

α // KS

commutes and α ◦ ηTK = KηS : K → KS. In C−actc, the monads are now pairs S̃ =
(S, lS),T̃ = (T, lT ) and K is replaced by a colax C-equivariant functor (K, ζK) : M⇒N ,
i.e. ζKC,M : K(C♦MM)⇒C♦NKM form a binatural transformation of functors satisfying
the coherences of types (1),(2).

9. A map of monads (K,α) is a map of pairs (K,α) : (T, lT ) → (S, lS) if the
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following hexagon commutes

TKGM

αGM

��

TζK

// TGNK
lTK // GNTK

GNα

��
KSGM

KlS // KGMS
ζKS

// GNKS

(7)

where GM = (C♦M ) ∈ EndC(M) etc. (for all C).

10. If (K,α) : T → S and (L, β) : V → T are two maps of monads, then their
composition is (K,α) ◦ (L, β) := (L ◦ K,Lα ◦ βK) : V → S which is again a map of
monads as it follows by simple pasting:

V V (LK)
V βK

&&LLLLLLLLLL

µV LK

��

V (Lα◦βK)
// V LKS

(Lα◦βK)S
//

βKS

%%K
KKKKKKKKK LKSS

LKµS

��

V LTK
βTK

//

V Lα

99ssssssssss
LTTK

LµTK

��

LTα // LTKS

LαS

99ssssssssss

V (LK)
βK

// LTK
Lα // (LK)S

11. For the equivariant case, there is nothing more here to show, as this makes sense
in any 2-category. The composition of maps of pairs is in detail

(L, ζL, α) ◦ (K, ζK , β) = (L ◦K, ζLK ◦ LζK , Lα ◦ βK).

The diagram expressing the fact that

Lα ◦ βK : (V LK, lVLK ◦ V ζLK ◦ V LζK)⇒(LKS, ζLKS ◦ LζKS ◦ LKlS)

is C-equivariant may be obtained as follows:

V LKGM

βKGM

��

V LζK

// V LGNK

βGNK

��

V ζLK
// V GPLK

lV LK // GPV LK

GPβK

��
LTKGM

LαGM

��

LTζK

// LTGNK
LlTK // LGNTK

LGNα

��

ζLTK
// GPLTK

GPLα

��
LKSGM

LKlS
// LKGMS

LζKS

// LGNKS
ζLKS

// GPLKS

12. A transformation of maps of (usual) monads σ : (K,α)⇒(L, β) : T → S is a
natural transformation σ : K⇒L such that

TK

α

��

Tσ // TL

β

��
KS

σS // LS

(8)
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commutes. For monads in C−actc, te requirements ar the same, but of course the com-
ponents need to be C-equivariant. Thus the transformation of maps of pairs

σ : (K, ζK , α)⇒(L, ζL, β) : (T, lT ) → (S, lS)

is a usual transformation σ : K⇒L satisfying the same Eq. (8), but viewed as a transfor-
mation of pairs σ : (K, ζK)⇒(L, ζL) : (T, lT ) → (S, lS), is required to be C-equivariant,
i.e. the square

K(C♦MM)
ζK

C,M
//

σC♦M

��

C♦NKM

C♦σM

��
L(C♦MM)

ζL
C,M

// C♦NLM

(9)

commutes for all C in C and M in M.

13. (The cube for transformations of maps of pairs) Denoting again, GM = C♦MM

etc. we have the commutative diagram

TKGM
TζK

//

TσGM

��

TGNK

TGNσ

��

lTK // GNTK

GNTσ

��
TLGM

TζL

// TGNL
lTL

// GNTL

which is actually the upper face of the cube

TKGM
TζK

//

TσGM

%%L
LLLLLLLLL

αGM

��

TGMK
lTK //

TGMσ

%%L
LLLLLLLLL GNTK

GNTσ

%%K
KK

KK
KKK

KK

GNα

��

TLGM
TζL

//

βGM

��

TGML
lTL // GNTL

GNβ

��

KSGM
KlS //

σSGM
%%LLLLLLLLLL KGMS

ζKS
//

σGMS

%%LLLLLLLLLL GNKS

GNσS

%%KKK
KK

KKK
KK

LSGM
LlS // LGMS

ζLS
// GNLS

(10)

where the bottom face is analogous commutative diagram involving L instead of K, where
the left and right faces commute because σ is a transformation of usual monads, and the
front and back hexagons commute because β and α are maps of pairs, cf. diagram (7).
Hence the cube commutes.

14. Theorem. (Mixed heptagon formula, given a map of distributive laws)
Let lS, lT be two distributive laws between a C-actions and monads, S,T in C-actegories
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M,N respectively, and (K, ζK , α) : (T, lT )⇒(S, lS) a map of pairs as above. Then for
each C in C, GM := C♦M ∈ EndC(M), the following diagram commutes

TKSGM
TKlS //

(KµS◦αS)GM

��

TKGMS
TζKS

// TGNKS
lTK // GNTKS

GN (KµS◦αS)

��
KSGM

KlS // KGMS
TζK

// GNKS

Proof. This is obtained by the pasting of the following diagram

TKSGM
TKlS //

αSGM

��

TKGMS
TζKS

//

αGMS

��

TGNKS
lTK // GNTKS

GNαS

��
KSSGM

KSlS //

KµSGM

��

KSGMS
KlSS // KGMSS

ζKSS
//

KGMµS

��

GNKSS

GNKµS

��
KSGM

KlS // KGMS
ζKS

// GNKS

where the upper left corner is commutative by naturality of α, the upper right by the pair
property of α, the left lower corner is the pentagon for the distributive law lS and the
right lower corner comes from the naturality of µS . Q.E.D.

15. Recall that a PRO is a strict monoidal category, whose object part is the set
of natural numbers (including 0) and the tensor product of objects is the addition of
natural numbers (and the unit object is 0). Different PRO-s differ by the morphisms,
and the tensor product on morphisms is still usually denoted by + but typically it is
not commutative. A (strict) representation of PRO D in a monoidal category E is a
strict monoidal functor D → E . There is an obvious way to define PRO-s by morphism
generators (under composition and “addition”) and relations.

We saw above that an endocell in C−actc is an endofunctor T together with a “dis-
tributive law” between C and T what is a binatural transformation lT satisfying two com-
mutative diagrams (1), (2) with F = T and lT = ζF . Given a representation T

• : D → E

we denote by T
n := T (n) and simply T := T (1)

Theorem. A (strict) representation of a PRO T̃• : D → EndC(M) is the same
as a pair (T, l) where T• : D → End(M) is a representation and l = lT is a binatural
transformation

lT : T ( ♦ )⇒ ♦T ( ), lTC,M : T (C♦M)⇒C♦T (M)

satisfying (1), (2) and such that for every α : n→ m the (n+m+2)-gon

T n(C♦M)
Tn−1lC,M

//

αC♦M

��

T n−1(C♦TM)
Tn−2lC,T M

// . . . T (C♦T n−1M)
l
C,T n−1M

// C♦T nM

C♦αM

��
C♦αM

��
Tm(C♦M)

Tm−1lC,M

// Tm−1(C♦TM)
Tm−2lC,T M

// . . . T (C♦Tm−1M)
l
C,T m−1M

// C♦TmM

7



commutes.
The last condition simply says that α : T n⇒Tm is in fact a C-equivariant trans-

formation α : (T n, lT
n

)⇒(Tm, lT
m

) of colax C-equivariant endofunctors, where lT
n

:=
lT n−1◦ . . .◦T n−2lT ◦T n−1l. This gives as many new diagrams as there are many primitive
natural transformations in the game. For example a nonunital comonad has a coproduct
δ hence the distributive laws between C-action and a nonunital comonad satisfy one more
axiom, what amounts to 3 diagrams total. More precisely, one has a structure of a PRO
on natural numbers where δ etc. are the maps between n and m instead of T n and Tm

and we are dealing in fact with a strict monoidal functor from this PRO to the category
of endofunctors of M (called also a strict representation of this PRO). Now I claim that
a strict representation in EndC(M) is simply a pair of a representation in End(M) and a
distributive law in the generalized sense, satisfying n+2 relations if the PRO is generated
by n morphisms.

16. Now specialize C to the image of a representation G• : C0 → End(M) of (another)
PRO C0 in End(M). The generating object is G1 = G•(1). C is itself not necessarily a
PRO even in this case, as there may be a nonzero kernel of G• on the level of objects,
but this presents no difficulty in the following. This is a strict monoidal subcategory
of End(M). Thus we have now two PRO-s in the game. First of all in this case the
diagrams (1), (2) may be skipped all together! Namely Ψ, u, l1,M are all identities, hence
(1) is a tautology, while (2) for general A = Gn, B = Gm says simply

lGn+m,M = Gn(lGm,M ) ◦ lGn,GmM . (11)

and in particular
lGn,M = Gn−1(lG,M ) ◦ lGn−1,GM . (12)

what can be iterated to obtain

lGn,M = Gn−1(lG,M ) ◦Gn−2(lG,GM ) ◦ . . . ◦G(lG,Gn−2M ) ◦ lG,Gn−1M . (13)

Thus every lGn,M can be in the case when Ψ-s are strict described in terms of
lG,GsM for varying s ≤ n. In particular, it is enough to consider the distributive laws
with one naturality

l : TG⇒GT, lM := lG,M .

We denote by l
(n)
M := lGn,M . This way we have

l(n) = Gn−1l ◦Gn−2lG ◦ . . . ◦GlGn−2 ◦ lGn−1. (14)

The naturality of lC,M in first argument, for δ : Gn → Gm ∈ Mor C = G•(C0) says that
(n+m+ 2)-gon

TGn

Tδ

��

lGn−1
// GTGn−1 GlGn−2

// . . . Gn−1TG
Gn−1l // GnT

δT

��
TGm

lGm−1
// GTGm−1 GlGm−2

// . . . Gm−1TG
Gm−1l // GmT

(15)
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commutes.
From now on, whenever we discuss the distributive law between two representations

of PRO-s we will consider just the transformation l with one naturality.
For example, let C be the PRO for counital coalgebras. Its set of morphisms is gen-

erated by a morphism δ : 1 → 2, satisfying the coassociativity (δ + id)δ = (id + δ)δ and
a morphism ǫ : 1 → 0 satisfying (ǫ + id)δ = (id + ǫ)δ = id. An action of this PRO is, of
course, a counital comonad. Then, (15) becomes a pentagon for δ and a triangle for ǫ.

More generally, if we have two endofunctors first with a structure arising from a
representation of one PRO and another with a structure arising from another PRO, with
k and p relations respectively, then we get in total k + p additional diagrams for l (there
are no conditions on l except to be a transformation TG → GT otherwise). The sizes of
diagrams are always n+m+2 where n and m are the domain and codomain of a morphism
in one or another PRO in question.

17. If G = T is an underlying functor or a comonad G and the distributive law
l : GG⇒GG satisfies the quantum Yang-Baxter equation Gl◦ lG◦Gl = lG◦Gl◦ lG we say
that l is a strong braiding on the comonad G. Then formula (14) defines a distributive
law between G and Gn where the latter is inductively equipped with a composite comonad
structure using l(p). for p < n. These results are discussed in our earlier article [7].

18. Suppose S̃• : P → EndC(M), T̃• : P → EndC(N ) are representations of a
fixed PRO P . As before, S̃ = (S•, l

S) and T̃ = (T•, l
T ). A (colax) map of pairs

(K, ζK , α) : (T•, l
T ) → (S•, l

S) is a colax C-equivariant functor (K, ζK) : M → N together
with a binatural transformation α : TK⇒KS such that hexagon (7) commutes and such
that for every morphism τ : n → p in P with τT := T•(τ) the following diagram also
commutes:

T nK

τTK

��

Tn−1α// T n−1KS
Tn−2αS// . . . TKSn−1αS

n−1
// KSn

KτS

��
TmK

Tp−1α// T p−1KS
Tp−2αS// . . . TKSp−1αS

p−1
// KSp

(16)

A map of pairs may be thought of as a colax C-equivariant intertwiner from S̃• to T̃•.

19. Generalizing the notation from (14) for any natural transformation α : TK⇒KS

define α(n) := T n−1α◦T n−2αS ◦ . . .◦αSn−1 : T nK → KSn. Let L : N → R be a functor,
V• : P → EndC(R) a C-equivariant representation of P , and (L, ζL, β) : (V, lV ) → (T, lT )
a map of pairs.

Lemma. Lα(n) ◦ β(n)K = (Lα ◦ βK)(n).
This follows by easy induction. Using this one easily proves that the analogue of the

multigon (16) for Lα ◦ βK is commutative. This together with 10 gives
Proposition. The rule

(L, ζL, β) ◦ (K, ζK , α) := (L ◦K, ζLK ◦ LζK , Lα ◦ βK) : (V, lV ) → (S, lS)

gives a (associative) composition of maps of pairs.

20. Theorem. (Mixed heptagon for maps of endofunctor C-equivariant
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representations of a PRO) For every (τ : n→ p) ∈ MorP, the following diagram

TKSn−1GM

(KτS◦αSn−1)GM

��

TKlS(n−1)
//
TKGMSn−1

TζSn−1

//
TGNKSn−1

lTKSn−1
//
GNTKSn−1

G(KτS◦αSn−1)

��
KSpGM

KlS(p−1)
// KGMSp

ζSp

// GNKSp

commutes, where lS(n−1) = Sn−2lS ◦ . . . ◦ lSSn−2 and ζ = ζK .
This proof is completely analogous to the proof of 14, hence it is left to the reader.

We call these identities “mixed” because unlike the diagrams for lT and lS separately, they
involve both lT and lS.

21. Finally, the notion of transformation of maps of pairs σ : (K, ζK , α)⇒(L, ζl, β) :
(T•, l

T ) → (S•, l
S) is identical as in the case of monads in 12 (as it does not involve

morphisms in P): require the commutativity of (8) and (9).

22. Theorem. The C-equivariant endofunctor representations of PRO P in varying
C-actegories are objects of a 2-category RepC−actc(P) where 1-cells are (colax) maps of
pairs in the sense of 18 and 2-cells are transformations of maps of pairs in the sense of
21. We also consider the 2-subcategory RepC−actp(P) ⊂ RepC−actc(P) where the 1-cells
are those maps (K, ζK) of pairs whose coherences ζK are invertible.

The details are left to the reader.

23. (The category distr(M, G) of distributive laws between an endofunctor (resp. a
(co)monad) G and varying monads in a fixed category M.) Objects of distr(M, G) are
pairs (T, l) where T is a monad in M and l is a distributive law from G to T . Morphisms
(T, l) → (T, l′) are the monad morphisms α : T → T′ such that there is the following
commuting square of natural transformations of endofunctors:

TG

αG

��

l // GT

Gα

��
T ′G

l′ // GT ′

(17)

It is clear that if we C is the PRO with only trivial morphisms, and G = G(1) for a
representation G : C → End(P) then distr(M, G) is simply the full sub-1-category of (the
decategorification of) RepC−actc(P) whose 0-cells are equivariant representations T of the
PRO P for monoids (i.e. monads) in M.

24. The original theorem of Beck.
(i) Let l : TG⇒GT be a distributive law from an endofunctor (resp. monad) G to a

monad T = (T, µ, η). Then the rule

G̃ : (M, ν) 7→ (GM, νl) = (GM,G(ν) ◦ lM ), νl : TGM
lM
→ GTM

G(ν)
→ GM, (18)

defines an endofunctor on MT lifting G to an endofunctor (resp. monad).
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(ii) Conversely, if U : MT → M is the forgetful functors (forgetting the monad
action: (M, ν) 7→ M), and G̃ : MT⇒MT and endofunctor such that UG̃ = GU then for
any object M in M, the composition

TGM
TG(ηM )

// TGTM
U(ǫG̃F M)

// GTM (19)

defines the M -component of a distributive law TG⇒GT .
(iii) These two rules are mutual inverses.

25. Proposition. Condition (17) ensures that the induced functor Hα among the
Eilenberg-Moore categories will be G-equivariant.

Proof. Let G̃ and G̃′ be the lifts of G in MT and MT
′

respectively.
For all (M, ν′) in MT,

Hα(G̃′(M, ν′)) = Hα(GM,G(ν′) ◦ lM )
= (GM,G(ν′) ◦ lM ◦ αGM )

(17)
= (GM,G(ν′) ◦G(αM ) ◦ l′M )
= (GM,G(ν′ ◦ αM ) ◦ lM )

= G̃(M, ν′ ◦ αM )

= G̃Hα(M, ν′).

26. Lemma. Given any functor H : MT
′

→ MT satisfying UH = U ′ the following
identity holds

Hǫ′ ◦ ǫHF ′UH ◦ Fη′UH = ǫH (20)

Proof. This follows from the naturality square ǫH ◦ FUHǫ′ = Hǫ′ ◦ ǫHF ′U ′ and the
adjunction triangle UHǫ ◦ η′UH = idUH for F ′ ⊢ U ′ = UH :

FUH
Fη′UH

sshhhhhhhhhhhhhhhhhhhh

id

��
ǫH

$$I
IIIIIIIIIIIIIIIIIIIII

FUHF ′UH

ǫHF ′UH ''OOOOOOOOOOO FUHǫ′
// FUH

ǫH

))TTTTTTTTTTTTTTTTTT

HF ′UH
Hǫ′ // H

27. Theorem. (Mixed pentagon formula, given a functor H) Let l, l′ be
two distributive laws from an endofunctor G on M to the monads T,T′ respectively. If
H : MT

′

→ MT is a functor such that UH = U ′ and G̃H = G̃′ then

TT ′G
Tl′ //

UǫHF ′G

��

TGT ′ lT ′

// GTT ′

GUǫHF ′

��
T ′G

l′ // GT ′.

(D1M)
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Notice that two different distributive laws (twice l′ and once l) appear in the formula and
that this formula (D1M) reduces to (D1) if T = T′ and l = l′ (then H = id and µ = UǫF ).

Proof. By (19), axiom (D1M) will follow by the commutativity of

TT ′G
TT ′Gη′

//

UǫHF ′G

��

TT ′GT ′ TU ′ǫ′G̃′F ′

//

UǫHF ′GT ′

��

TGT ′ lT ′

//

UǫGF ′

$$I
IIIIIIII GTT ′

Gµ

��
T ′G

T ′Gη′
// T ′GT ′ U ′ǫ′GF ′

// GT ′

Here the left-hand square and the middle rectangle commute by the naturality of Uǫ. The
corner triangle on the left will be expanded further to prove its commutativity:

TGT ′
TGηT ′

//

TGη′T ′

""D
DD

DD
DD

DD
DD

DD
DD

DD
DD

D

id

��

TGTT ′ UǫG̃FT ′

//

TGαHT ′

��

TGTη′T ′

&&NNNNNNNNNN GTT ′

GUǫHF ′

��

TGTT ′T ′

TGUǫHF ′T ′

xxpppppppppp

TGT ′T ′

TGµ′

vvlllllllllllll

TGT ′ UǫHG̃F ′

// GT ′

The upper horizontal line is expanded using (19) and noticing TGTT ′ = UFGUFT ′ =
UFUG̃FT ′; what is sent by UǫG̃FT ′ into UG̃FT ′ = GUFT ′ = GTT ′. The commutativity
of the 3 triangles on the left is evident: for the leftmost follows from µ′ ◦ η′T = id and the
functoriality of TG; for the next triangle by the unit axiom for αH , i.e. η′ = αH ◦ η; and
for the third triangle by the definition (6) of αH . To prove that the right-hand hexagon
also commutes it is sufficient to prove that the 3 sides on the right compose to UFUX

where X = G̃ǫHF ′. Indeed, UX = GUǫHF ′ is the top-down morphism on the right and
the hexagon readily reduces to a naturality rectangle for Uǫ. The 3 arrows on the right in
fact compose to

TG(µ′ ◦ UǫHF ′T ′ ◦ Tη′T ′) = UFG(UHǫ′F ′ ◦ UǫHF ′U ′F ′ ◦ UFη′U ′F ′)

= UFUG̃(Hǫ′ ◦ ǫHF ′U ′ ◦ Fη′U ′)F ′

= UFUG̃(Hǫ′ ◦ ǫHF ′U ′ ◦ Fη′U ′)F ′

The RHS is evidently equal to UFUX as required if the expression in the brackets equals
ǫH . This is exactly the content of the previous Lemma 26, i.e. formula (20).

This finishes the proof of the “mixed pentagon formula”.

28. Corollary. If H : MT
′

→ MT is a functor satisfying UH = U ′, equivariant in
the sense HG̃ = G̃′H, then α = αH is a morphism in distr(M, G), i.e. it satisfies (17).

Proof. The required commutativity of (17), by the definition αH := UǫHF ′ ◦ Tη′,
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reduces to the commutativity of the external part of the diagram

TG
l //

Tη′G

{{ww
ww

ww
ww

w
TGη′

##G
GG

GG
GG

GG
GT

GTη′

##G
GG

GG
GG

GG

TT ′G
Tl′

//

UǫHF ′G

��

TGT ′

lT ′
// GTT ′

GUǫHF ′

��
GT ′ l′ // GT ′

The commutativity of the left-top triangle is the unit axiom for the distributive law l, the
right-top rectangle is commutative by the naturality of l, and the bottom is the pentagon
(D1M) from 27. Q.E.D.

29. Theorem. (Mixed pentagon formula, given a map α of distributive
laws) Let l, l′ be two distributive laws from an endofunctor G to to monad T,T′ respec-
tively and α : (T, l)⇒(T′, l′) a morphism in distr(M, G). Then the following diagram
commmutes

TT ′G
Tl′ //

(µ′◦αT ′)G

��

TGT ′ lT ′

// GTT ′

G(µ′◦αT ′)

��
T ′G

l′ // GT ′.

(D1Ma)

Proof. This simple proof is due M. Jibladze (personal communication). Recall that µ =
UǫF . Then the following diagram is commutative:

TT ′G
Tl′ //

αT ′G

��

TGT ′ lT ′

//

αGT ′

��

GTT ′

GαT ′

��
T ′T ′G

��

T ′l′ //

µ′G

��

T ′GT ′ l′T ′

// GT ′T ′

Gµ′

��
T ′G

l′ // GT ′

Indeed, the lower pentagon is a part of the statement that l′ is a distributive law. The
left upper corner square is a naturality square for α. Finally the right upper corner is
expressing the condition that α is a map in distr(M, G) (composed by T ′). The external
part of this diagram evidently gives (D1Ma). Q.E.D.

30. Proposition. If H = Hα in (D1M), or equivalently, by 2, α = αH , then the
vertical arrows in (D1M) are identical to the corresponding compositions of vertical arrows
in (D1Ma).

Proof. It is sufficient to show UǫHF ′ = µ′ ◦αHT ′ as this implies the assertion both for
the left-hand and right-hand vertical arrows. In fact we show the stronger assertion that
UǫH = µ′ ◦ αHU ′. Setting µ′ = U ′ǫ′F ′ = UHǫ′F ′ and αH = UǫHF ′ ◦ UFη′ we reduce
the required identity to UǫH = UHǫ′F ′ ◦ UǫHF ′U ′ ◦ UFη′U ′. By the functoriality of U ,
the assertion follows from Lemma 26, that is formula (20). Q.E.D.
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31. Theorem. Given an endofunctor (resp. comonad) G in a category M, the cat-
egory distr(M, G) is canonically isomorphic to the category of Eilenberg-Moore categories
of varying monads equipped with a lift of G, and functors commuting with the forgetful
functors and intertwining the lifts of G.

Proof. (i) (Bijection for objects) By the definition, Eilenberg-Moore categories of
T-modules MT are trivially in 1-1 correspondence with the monads T, and for a fixed
monad the distributive laws are in bijection with lifts by Beck’s theorem 24.

(ii) (Bijection of Hom-sets) Given a pair of monads T, T′, it is also classical that
morphism of monads are in 1-1 correspondence α 7→ Hα with the functors of Eilenberg-
Moore categories commuting with the forgetful functor. So to show the bijection for
morphisms there is only one nontrivial thing to prove: the property that a map α of
monads is actually a morphism in distr(M, G) corresponds exactly to the fact that Hα is
intertwining the corresponding lifts of G. But all the hard work there has been already
done: Proposition 25, states this in one direction, and Corollary 28 does the converse.

(iii) (α 7→ Hα is a contravariant functor) This is certainly known, but we do not
know the reference. First of all, the identity functor H = id gives αid = id as it is clear
by the adjunction triangle ǫF ◦ Fη. In the situation

MT
′′ H′

−→ MT
′ H
−→ MT

with UH = U ′, U ′H ′ = U ′′, we need to show that αH
′

◦ αH = αH◦H′

. The LHS is the
composition

UF
UFη′

−→ UFU ′F ′ UǫHF
′

−→ UHF ′ U
′F ′η′′

−→ U ′F ′U ′′F ′′ U
′ǫ′H′F ′′

−→ U ′H ′F ′′ = T ′′

By naturality of Uǫ we may interchange U ′F ′η′′ ◦ UǫHF ′ = UǫHF ′U ′′F ′′ ◦ UFUHF ′η′′

and furthermore interchange U ′ǫ′H ′F ′′ ◦ UǫHF ′U ′′F ′ = UǫHH ′F ′′ ◦ UFU ′ǫ′H ′F ′′ :
UFU ′F ′U ′′F ′′ → U ′H ′F ′′ = T ′′. Thus we obtain that LHS equals

UF
UFη′

−→ UFU ′F ′ UFUHF
′η′′

−→ UFU ′F ′U ′′F ′′ UFU
′ǫ′H′F ′′

−→ UFU ′′F ′′ UǫHH
′F ′′

−→ T ′′

Now the composition of the second and third morphism is UFαH
′

by the definition, and
αH

′

◦ η′ = η′′ hence the composition of the first three transformations is UFη′′, therefore
all 4 compose to the UǫHH ′F ′′ ◦ UFη′′ = αH◦H′

by the definition. Q.E.D.

32. It is again standard that maps of monads α : T → S are in 1-1 correspondence
with the functors H : MS → NT, such that UTH = KUS.

MS

US

��

H // NT

UT

��
M

K // N

We will below need the explicit formulas for this bijection. Given a functor H as above,
the corresponding map of monads αH : TK⇒KS (cf. Borceux, II 4.5.1) is the composition

TK
TKηS

−→ TKS = UTFTKUSFS = UTFTUTHFS
UT ǫTHFS

−→ UTHFS = KUSFS = KS
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Conversely, given a morphism of monads α we obtain the lift Hα simply as

Hα(M, ν) := (KM,K(ν) ◦ αM ).

All together this is a canonical bijection, clearly extending the formulas in 7. Moreover, for
any transformation of maps of monads σ : (K,α)⇒(K ′, α′) : T⇒S one defines a natural
transformation σ̃ : Hα⇒Hα′

by σ̃ = σUT , i.e.

σ̃(M,ν) := σM : (KM,K(ν) ◦ αM ) → (K ′M,K ′(ν) ◦ αM ).

We leave for the reader to check that σ̃(M,ν) is really a morphism in NT, i.e.

σM ◦K(ν) ◦ αM = K ′(ν) ◦ α′
M ◦ T (σM ).

This transformation lifts σ, when considered just as a transformation of functors σ :
K⇒K ′. That means σ̃ = σUT .

Conversely, given any natural transformation θ : Hα⇒Hα′

such that UT (θ(M,ν)) :
KM → K ′M does not depend on ν and hence lifts a (unique) transformation of functors
θ∗ : K⇒K ′, then θ∗ is automatically given by formula (θ∗)M = UT (θ(TM,µM )) which is a
transformation of maps of monads

θ∗ : (K,α)⇒(K ′, α′) : T → S

Now we claim that H is equivariant (intertwines GM and GN ) iff α is a map of pairs,
i.e. (7) holds. Of course, if the coherence ζ is non-trivial then one needs to equip also H
with a coherence. Moreover, one can consider a certain 2-category of small categories each
equipped with an endofunctor G, a monad, say T, and a distributive law; with the maps
of pairs as morphisms and certain class of compatible modifications of such morphisms.
Then there is a 2-isomorphism with a 2-category of Eilenberg-Moore categories, equipped
with lifts, equivariant functors of such and their equivariant natural transformations where
everything commutes with the forgetful functors.

33. Proposition. Condition (7) ensures a 2-cell HαGM ⇒ GNHα.
Proof. For all (M, ν) ∈ MS,

HαGM(M, ν) = Hα(GMM,GM(ν) ◦ lSM )
= (KGMM,KGM(ν) ◦K(lSM ) ◦ αGM )
= (KGMM,KGM(ν) ◦GN (αM ) ◦ lTKM )
⇒ (GNKM,GN (K(ν) ◦ αM ) ◦ lTKM )
= GN (KM,K(ν) ◦ αM )
= GNHα(M, ν)

We used in the middle step the 2-cell ζKM : KGMM⇒GNKM in the first component and
composing with it in the second component.

34. Theorem. The natural transformation σ̃ : Hα⇒Hα′

induced from a transforma-
tion of monads σ is equivariant iff σ : α⇒α′ is a transformation of maps of pairs.

35. Theorem. If P is the PRO for monoids then 2-category RepC−actc(P) is iso-
morphic to the following 2-category: the objects are triples (M,T , UT : MT → M) where
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T is a monad in a C-actegory M, MT is the Eilenberg-Moore category of T equipped with
a C-action making UT a strict monoidal functor; 1-cells are colax C-equivariant functors
of Eilenberg-Moore categories MT → NS commuting with the forgetful functor and 2-cells
the natural transformations of colax C-equivariant functors.

36. In his classical article [10] R. Street has considered monads and Eilenberg-
Moore objects in general 2-categories. The fact that the Beck’s bijection between lifts
and distributive laws extends to an isomorphism of 2-categories, may be viewed, after
applying our correspondence between the 2-category of distributive laws and the 2-category
of equivariant monads, as the correspondence between the Eilenberg-Moore objects and
monads inside the 2-category C−actc. For this one needs to apply a result on the existence
of Eilenberg-Moore objects in this setup. S. Lack has proved a general result of this type,
namely existence of certain lax limits whose combinations include the Eilenberg-Moore
objects, in the 2-category of pseudoalgebras over a 2-monad. In our case the 2-monad
is a strictification of the pseudomonad C× on Cat, whose structure is induced from the
monoidal category structure on C, and whose pseudocoalgebras are coherent C-actions. In
a way this is more general than our approach as it allows other 2-monads: on the other
hand our case is more general as the monads are generalized to actions of PRO-s and more
general D-actions. Some subtleties of the latter case are discussed in [9]. Our approach
also emphasizes on explicit formulas for all the correspondences and isomorphisms instead
of equivalences at certain places.

37. (Relative distributive laws) Recall that a pseudomonad in a Gray-category K is an
objectH in K and a pseudomonoid in the Gray-monoid K(H,H) (for Gray-pseudomonoids
see e.g. [3]). Thus a pseudomonad is a tuple D = (D,µ, η, αl, αr, αµ) where D : X → X

is a 1-cell in K, µ : DD → D and η : D → DD are 2-cells in K and the coherence
for right unit αr : µ ◦ Dη⇒idD, the coherence for left unit αl : µ ◦ ηD⇒idD and the
coherence for associativity αµ : µ ◦ (Dµ)⇒µ ◦ (µD) are invertible 2-cells in K satisfying
2 standard coherence identities. Suppose we are given pseudomonads C and D in K,
and a fixed 1-cell X in K(H ′, H), for some object H ′ in K. Suppose that X is both the
C-pseudoalgebra (X, ρ, ψC , ξC) and D-pseudoalgebra (X, ν, ψD, ξD), one may ask what
makes the D-pseudoalgebra structure (say colax-) C-equivariant in the sense that the
defining 1-cell ν : DX → X and the invertible 2-cells

ψD : ν ◦ ηX⇒IdX , χD : ν ◦ (Dν)⇒ν ◦ µX ,

are equipped with a structure of 1-cell and 2-cells in the 2-category of C-pseudoalgebras,
colax morphisms of pseudoalgebras, and their natural transformations. For this to make
sense we need also a C-structure on DX what may need another distributive law, but
in many cases this part of the data is in fact canonically provided, while the additional
structure above is not. For example, if the pseudomonads are the cartesian products with
monoidal categories then we can just use the commutativity of the cartesian product to
identify DCX and CDX while their actions on concrete X does not trivially commute
and what we discuss here is precisely the additional distributive structure for the two
actions. More generally, we can consider just some “higher” distributive law between
the pseudomonads, can : DC → CD and define the distributive laws for pseudoalgebras
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relatively to it. For the 1-cell ν : DX → X the additional structure is a 2-cell

τ : ρ ◦ Cν⇒ν ◦D(ρ) ◦ can

in K, where two coherences hold for τ , namely

CDX

uuuuv~
τ

Cν //

can

��

CX

ρ

��

DX

=
$$H

HH
HH

HH
HH

ηC
DX

::vvvvvvvvvD(ηC)
//

������D(ψC)

DCX

D(ρ)

��
DX

ν // X

= DX
ηC

DX //

ν

��
������ ηC
ν

CDX

C(ν)

��
X

ηC
X //

=
$$H

HHHHHHHH
������ ψC

CX

ρ

��
X

and the pasting

CCDX

µC
DX

��

can

&&LLLLLLLLLL
CCν //

�����	 Cτ

CCX

Cρ

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

CDCX
CDρ

%%K
KK

KKKKK
KK

can

��
CDX

can

&&LLLLLLLLLL DCCX

DµC
X

��

DCρ

%%K
KK

KKKKK
KK CDX

can

��

Cν //

����}� τ

CX

ρ

��

DCX
�����	 D(χC

X )

Dρ
%%K

KK
KKKKK

KK DCX

Dρ

��
DX // X

equals the pasting

CCDX

µC
DX

��

CCν //

				�� (µC
ν )−1

CCX

µC
X

��

Cρ

##H
HH

HH
HH

HH

������ χC

CX

ρ

��

CDX

can

��

Cν //

������ τ

CX
ρ

##H
HHH

HH
HH

H

DCX
Dρ

// DX ν
// X

These coherences say precisely that (ψD, τ) : (X, ρ, ψC , χC) → (X ′, ρ′, ψ′C , χ′C) is a colax
morphism of C-pseudoalgebras. Notice that if the pseudonaturality of µC and ηC is in fact
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naturality then we exactly get one triangle and one pentagon for the nonidentity 2-cells.
For the 2-cells ψD : ν ◦ηDX⇒idX and χD : ν ◦D(ν)⇒ν ◦µDX there is no additional structure
but rather a requirement that they are natural transformations of colax C-equivariant
morphisms of C-pseudoalgebras, what boils down to a bit expanded tin-can diagrams:

CX //

ν

��

C(idX )

<<
������ C(ψ)

CDX // CX

ν

��
X

idX

<< X

=

CX
C(ηD

X )
//

ρ

��

ηD
CX

##H
HH

HH
HH

HH
CDX

can

��
uuuuv~
τ

C(ν)
// CX

ρ

��

������ ηD
ρ

DCX

D(ρ)

��

������ ψ

DX

ν

##H
HHH

HHHHH

X

ηD
X

;;vvvvvvvvv

idX

// X

If ηD is again natural (in particular ηDρ = id), this identity boils down to a triangle for

natural transformations. The tin can identity for χD is as follows

CDDX
CµD

X

%%K
KKKKKKKKK

can

��

CDν //

������ C(χD)

CDX
Cν // CX

ρ

��

DCDX

can

��

CDX

uuuuv~
τ

Cν

;;vvvvvvvvv

can

��
DDCX

�����	(µD
ρ )−1DDρ

��

µD
CX // DCX

ρ

��
DDX

µD
X

// DX ν
// X

=

CDDX
CDν //

can

��

CDX
Cν //

can

��

CX

ρ

��

DCDX

can

��

DCν //

�����	 Dτ

DCX
������ τDρ

��
DDCX

������ χDDDρ

��

DX

ν

##H
HHHHHHHH

DDX
µD

X

//

Dν

99ssssssssss
DX ν

// X

(21)

Again in the 2-categorical situation, when µDρ is the identity this boils down to a pentagon
for natural transformation. The distributive laws between two actions of monoidal cate-
gories on a fixed category X are a special case of this construction. Notice that each of the
two pentagons and two triangles, is defined using a pasting diagram which contains embed-
ded exactly one pentagon or triangle for the higher distributive law. This is an interesting
“recursive” structure. We see that the distributive laws between the pseudoalgebras are
defined relative to a higher distributive law can : CD → DC between their pseudomonads
which is in our case “canonical” and invertible, but it may be not so. Moreover, the higher
distributive law may be in fact a pseudodistributive law as in [6], and we again, mutatis
mutandis, define the distributive laws between the pseudoalgebras using essentially the
same “relative” pasting diagrams as above, sometimes with nontrivial 2-cells inserted in
place of trivial ones. For example, the upper left pentagon in the left-hand diagram in (21)
is then filled with a nontrivial 2-cell.
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