Pregled bibliografske jedinice broj: 298950
Contrast Set Mining through Subgroup Discovery Applied to Brain Ischaemia Data
Contrast Set Mining through Subgroup Discovery Applied to Brain Ischaemia Data // Advances in Knowledge Discovery and Data Mining 11th Pacific-Asia Conference PAKDD 2007 / Zhou, Zhi-Hua ; Li, Hang ; Yang, Qiang (ur.).
Berlin : Heidelberg: Springer, 2007. str. 579-586 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 298950 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Contrast Set Mining through Subgroup Discovery Applied to Brain Ischaemia Data
Autori
Kralj, Petra ; Lavrač, Nada ; Gamberger, Dragan ; Krstačić, Antonija
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Advances in Knowledge Discovery and Data Mining 11th Pacific-Asia Conference PAKDD 2007
/ Zhou, Zhi-Hua ; Li, Hang ; Yang, Qiang - Berlin : Heidelberg : Springer, 2007, 579-586
ISBN
3-540-71700-5
Skup
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2007)
Mjesto i datum
Nanjing, Kina, 22.05.2007. - 25.05.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
subgroup discovery; rule learning; contrast set mining
Sažetak
Contrast set mining aims at finding differences between different groups. This paper shows that a contrast set mining task can be transformed to a subgroup discovery task whose goal is to find descriptions of groups of individuals with unusual distributional characteristics with respect to the given property of interest. The proposed approach to contrast set mining through subgroup discovery was successfully applied to the analysis of records of patients with brain stroke (confirmed by a positive CT test), in contrast with patients with other neurological symptoms and disorders (having normal CT test results). Detection of coexisting risk factors, as well as description of characteristic patient subpopulations are important outcomes of the analysis.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
098-0982560-2563 - Algoritmi strojnog učenja i njihova primjena (Gamberger, Dragan, MZOS ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb,
Klinika za traumatologiju
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus