Pregled bibliografske jedinice broj: 293372
A NEW ADAPTIVE BLENDING PREDICTOR FOR LOSSLESS IMAGE COMPRESSION
A NEW ADAPTIVE BLENDING PREDICTOR FOR LOSSLESS IMAGE COMPRESSION // Proc. ITI 4th International Conference on Information and Communications Technology / Mohamed, A. Salem ; Mahmoud T. El-Hadidi (ur.).
Kairo: Institute of Electrical and Electronics Engineers (IEEE), 2006. str. 89-100 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 293372 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A NEW ADAPTIVE BLENDING PREDICTOR FOR LOSSLESS IMAGE COMPRESSION
Autori
Knezović, Josip ; Kovač, Mario ; Mlinarić, Hrvoje
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proc. ITI 4th International Conference on Information and Communications Technology
/ Mohamed, A. Salem ; Mahmoud T. El-Hadidi - Kairo : Institute of Electrical and Electronics Engineers (IEEE), 2006, 89-100
ISBN
0-7803-9770-3
Skup
Information Processing in the Service of Mankind and Health: ITI 4th International Conference on Information and Communications Technology (ICICT2006)
Mjesto i datum
Kairo, Egipat, 10.12.2006. - 12.12.2006
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
kompresija medicinski slikovnih podataka; metode predviđanja; kontekstualno modeliranje slikovnih podataka
(Lossless Image Compression; Predictive Coding; Predictor Blends)
Sažetak
Medical image compression is a growing need in the era of large amount of image data stored in contemporary health care systems. In the article we propose a novel method for lossless medical image compression based on predictive models and entropy coding. The predictor models the image properties around the current, unknown pixel and adjusts itself to the local image region. The main contribution of this work is the enhancement of the well known approach of predictor blends through highly adaptive determination of blending context on a pixel-by-pixel basis using classification technique. This allows modeling of more complex image structures such as nontrivially oriented edges and the periodicity and coarseness of textures.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo