ࡱ> F=JLǫx? JFIFKKMSO Palette oqrxz{GIKbdffghfikijkilnkoqmnooprorspsvsstsuvsvxuxzvwxvz}yyyz{|z|~z~||}}~}~½½ľÿ$%(;DT60IYlw|{GHk6H=4fxet*'G2MT) Z\ 6dYLg8v]sqC{β &luvJp?K+l+vʂ|x2" B9u>VL8.}=Bf&M{6EX~t#V571ȯ|_F6I,JN;p|ɋҞ)PDB:!`?1*#BIz)pRa r(s^E,)ÆYDmZG 㔢EѳuB"輌7mg袅ω$xR'vXw|:LX ?+f+GrdGkCCƛ8گ 7QUzlƻ+| yTT,>[$ᒢU(A$1Ȃ<\jpPd_9',aMВ:@prˇ8h3p}>G54/i $}g`lHlW)*I"'RRJùcXbJF[}xJX:2p"{Q ƾa3dɂcb^8_]6;_0N% (\b#de(O=ty8xHzobe|FXq]FP<3̍ )4#mE/ĺ2Dܱ9taNKӖ6B$ޟ:F]< 1i M$V@:\HbLG$jtMRMm"F.T[AًYe&D$2Ph"Ǟl &,ۄS)ɮ)26[]<ߑCDgˆpzp f_K \g&Ćh#E"H\QAY3,ab%ȁ@fd4x <(,uBӑJccoUOOcIW; 5~i&x2]c{pjkUM03%V# am!GT"l78A+/]@ w+<{ saTI`ÛҲ%D2E;G>wovosebGcխzD "LaUBlMU=pc\)y(%"$3[W+/XɎkE6EWi ,hJry&TG"7SXWνs0oA(9lhWu]9G4KWcDԟ!b<yc@A/G@R ǒ+l]n&5m>&uRd4jNCdJerC7H@M x}Ƃ D(%VX$`@'ÛQEl q`PEv<ȸ b1R|o΀-2Y".zۅV),nS0J͂s0"$5X=$ce\H4M_~tzkf*"fNj(pAȍX!K)~dǯ+###VZ,,gmn}5U3&#e:"7{r4ŔaLK%$dr50Ҵ YU@J_j<+!%_cۛ9`x#8{5qD1@,KXk"L9#E$d%@SdWO{T˗?lm8js&d˞7lx֘sr2i!:Z pi}:>$ ԆGmor9h "ǞBc ԐngDQHHntJ܄cV! ;-?Fw}C<LɀE9M=tVR*3<Ƃ2$z&Yei*,0PWmzZJ)bw4=(Jf8^ޡ(#n+W4&F$H><,z>xDg4ˈԂg^OD~b5ƽUr’yh!/L3rI^M3&G یo ^`w5ҍŚiBt+8r}. 1Ȉ,5v'A-,Q* sZ1p8Qf+Ⱥ2 =ZYQ}4?IJ@G{׶Xph2F77MfnmsY 3KZ6SgYz,61fMF ףP3'ɟ3aiiA]C!x<$o LHJ?5}| #\ THK3@>MnDidcdښ9gyDf? NIK2Kxj:,J"mܽ[@Ce UYL8s<T4R#fԦ5F {r~$u$+s@Q렐|yuМ;ǯtXLXE[H$ ; tUt]_L߷4|}Np Y̅ z T3MH֟H@t?2"EGmYzW|w:kύ %`k!)7G;4Jz9LeU.d5Ιŋ4n dQ詰%&J 5'ӧf̝7g݉ a}{^>޲k'cD.cLA@?ŕ(+p0z6 g+)D~[J{BH&`kv| h%rKWgrlv~ۘZ#ǿ=e,.\`ebDSFp"I[e4oȿ˔Zp?6uq4֋\|W+ri IAa/B;FD&ֵcBQhgUa3bz ndo(壸b;ؿ'GT-"+ķEQۥ:BmBmK+öLʮRr~>tIoô'5F!Inn`N7/WcV2'zib]%bźO@NI{4Q#,@󴎖?rm>ɮ{=#8{pJ ?zw/YG?oq-JO/mVPTλ<3Mr{~?h"6Gi{e9|n<-J|??+J%Ƿ(}/GӲ_g͍e9D/r̍e9~%~iMy+Ø0S$~2PنwH biXPW!i_"YoN&HxU7Ҹ0>h/be VbERkq꿥SVÏD(V;7u$ںoO#I]һOts#< `d;&4_b:&4H*ڶ0tOz[/>a~GOXu~+/#?wr+!wv~~7EI;x^7߇>}h_[Dxkk~;BtS}F[E_S@;bݱTm6 M+2iKr5i>}Ic#yqI?HC鎛eV[fʬ[@k$e֥wHNgw{r\R+u봾Qy>1u.:^'ېfZMb k[b:g$SOIi^}OgKxOy81}iIr? c_uRgs꬯EZ'}|vA<>{~Q'G>(ӾEZ'}|zРN\bZf}ޱJLo_uq:#݀w IL/:Dzl2os)8G*ɴ 6J{a1vq8z51N=첓َt/bz_eO77 <g}me'Ӎ<[eO+=e'Bt-{/àK3wі=0(Kk0}ߢ-|]vg/ksy.>J1(7b~sw۟c?-g#V$ _Ҷ_| @˴Ioi'kwHc)-'LHrC; c/ Э"ioZN:Dɲ/ZRH6W9w2$8x=?/TΝTK?wBs'LN*uΝϝΝs'ĔIt /OSWv<废s${L#٨<2! ym67õּLm{?7}WK{7k9G$M=E5e]e.|? =HޏG"7_p43S=; oUp;.w1+17Q<iEs:_|)key5(Ό J۾k#K.7f\n'4OLdW]^Z^v͎k-13 =naB3,:'CƷ黑W:_{.߀;;ߠ;r# zCw4!y=@ tq ;߶7XЏ`л`V7_|E7q __\)i_|`H3!E^hB4 K /%!Ȓ~]K^2^#l|5HC^4|ЪI:߄QoWaY؏pлpQ0;( &4|s[ڏk';_'x0vy!ӓ#l|Q!meBYE|_|Ew lifHD 4)|=cW1_1_ f_|q̀휆hJ _ _ _ Ʈ?geAGPPW?/ (Nm\#ͬ; ͮ+U_+++U W W*R y4r,?_f0vIπ$ / `)πo|1$&$>y )rrrr]+7HA^4<*fE)|m^y1vy^/"۸ϫ?i_|`H3C^F/Aϫ-[ c2e$!y}AeuT ]3;( &4|3;>o9Ʈ`;'fV!-2P~hThr-7_|Ǘ-r @#h-?UUUb쪄Y_ |g6T o ]+V_CyP!qe=2Wj _|Ew lifHD 4͎4+Vصo%J̀/89 ѕ2UUU$<#(8>2]U3; (4%>y; jUjjj]Ւ6HϐAA+jS *U0v[J|'_|aۨg &_ |1MmB#ͬ黑͞US|>]>?O>@2hV4Ok[mV[k5jՒ3_|E7q _jM/8۔GY"o/4zu}5o5k`Zo?!>h@ӿFo-Z[+?3/ (΀mB7V|jj0vGY҇PBY9VjWcj_|kj$Wc>hͶSj _-_-_-ƮZZZ_ |1wlSZ3صo:?geBP(pS)E_|6*fVA B#X _zo=z] /]?~??geAGPP5ϯ?/ (Nm\#ͬ; .)a쪃_Cz  Z9ti`6mۀk 3; 0 $F5|=g7 bolifHߍ~hlh6mۈk#FhރhxU͊zzz]3_|E7q __ _|qMmJ#ͬ{:;zkP_kkk >Ah4Oh4%gw|QEMhgw|l&]vN#ͬC([e hMd6/ 0o$MFZ-lۤ _W]_@|g_ |1۔o8&ׄ I lC(zeh_ N/";Q4?"oAhfG)|=cW3_3_ f_|q̀휆h66c o 3#(c(f۬?/ (Nm\#ͬ; ͮעׂE-2h0h@٢ bjkkI_|'6iU$b/IMH|!}7vCZӪ[mc-[$!y=@ [4Okjmۊk+V3_|E7q _VM/8۔GY"o/4zu}[5M6kCPm6_  joK]%WYz:,e[{Koᗟͱ8ߨߝGI߆Qx\<R "9]6{5ҕUB{O{Z'=-S}V ^G^]K 5yϣ'Lua;P+䝏>W}'N~o-'[@L+b;dqF{ { h[@L[;sk}o~i]/!}֎FlQz֒%ߛu^ѷ㲿k?&3R~_ }CD oe{_ɛ M#K4ڜ +#<߱ W>}Mv=޸}nq>-x3z__4O>1e]Xツ7I{Z'=-S{~yi/`?as) =1e{ۄ8 zw/Lur仗˟4O_bʴ-Ꞗ~^7-SC _<.h1eK2i O~c@츅 9ybP$!O3|};.;DJi7[OvYwf0[vIY6cC };ʪߔ_z}ܻOpE8rYZ.;:볟MFxHَvgx';+X)n1H)MP"ֽ^mcDh{<uyU.Klr^·;yS?3&׉c=.>P^߃MfϏ^wԒΙ.힉xCX@= TMf0Iϓϩi x\ T>ewef ByְBTITHHjB5XRQQ+cZI*hƒ]?nϹܝw̛;I={={;E*A@xBBUx © N'=0xgoφߥ .CA:>J82 cïT*ɒkwGXqc)ǁKp]  / 8_/x7_jR` \U[W)t#&&T@;<.n}TU B9fvxyp4o}'>=t,T~.T<~Ǯ.n}׻D1m U:XoE\OqL5Ҝߨ&[o7Y,EW9MU*K~ª',nYrnXu,Y>%?bo]7ղ|%n':]-Zr}Yj;8?u?M}Nxݷv 3?/3& _TaS;,(u8ru:׹p9"w.1#zKص_)+1Sc= _;/̣(ۑ~6bxqlH&˺Sx {O,C"0pTYIk.kð؍)0 #%iǃh1~;$ Z_$EE\7.xP(]&EjKAx |aS f<05ʾV|aC/4\`88Š)bD|aQ$l0LHbX(YH&%j}Ax܈y#EYkŽF$ oHZ Axl<;"a<;VGlF"0ҫH0/cUxģxUaa 뤇!Q%:6G礵 7Tz I)A ģ' <*12|ƣZ5|YD|aQcPB׏1r("рH4H rCO ceTVeD|a[' <a8[a/7b/L"70rۋ|My+7/L<*~%mm,p!G_(i/ #0,$Ĝ6DI&UWz@oU'r^nV|aO'yAx|cx318W|a_NZ' 70su߀ xtNVa}/_BmwɛPxիw-0g㴌0nۏot&si˘`e2GӸ"î/2}E㻛w{R.Z -YL M-sNd9LSm\6@yՒ.>m(ɗ\ ZiYpI޴Q-ym['2mj i- iW˂ΰ >c<OwiW˂f~c<4Nm@->lcs$Z4,jUgKQygKi>J-!M5}dcKlUw~qu>.M0ϖ":/gK%S%/5}>߶DCPo^$r{E 'XmFJs,]sX˰.Tfb;m|Y'Wm?gV9u7姢ik=E{1px$.ysx5,lk~^ëO(#[︩ZQ׉]W㓫]S:xR/UM?CBgښ^VIm?N-v,<K[~2µ(;;Wxnf s9zlCjlK9NjymȠ8vhzWowwPfܔN]LZu%tyB5Oؾ:s@i|6O0L紟M@R dbOi&'Wmahhz6'ady~6`/:4bʸC̨@Iۄi gQ>ի4Q^ڌvtH{+b?S~Upryaw75?Ny,B!l=߃IL-4G _ߍȔϱ~r3rb/7S9Bg 嫖,2.,Z^`=TZstx۶eA{FؗYT-]q:Pv~ ۽\DQ~nmL}ߑpV߷.Ce?C͠5WRcyk>eh9ƴ^m4r@= $a&hW$Dϓϩii x\ p>7x4 HL@. 0LxEH2Q@[KǑN*>pԈaFMj8vFD1 ޓͽ"ʝs;~B\K\{!pQ!,d:!@ q3I#DBg{rDqGERBBpP ,'ޥ[ŕZ8Ry:9!1PU祄a#(B2: 7.T-s.')$4Q/b@ϗϬu3LA<$O3e#H$Ļ&wQۻic78_<̤k\o#YQسOuIY|4BNÚ@|s%Bc 9n{a$M$g"o6Ǝo7y@x==zĿ={}S.9~ w;"a;~'~'ؿoϼ3(O9Ox#>'An5>z][HH~F_>MlhB\E-LSך:Թ=ww'Oǩ 7/msȖta4A1p V(UP+N]牒#=yœDzf pa.g5P9klƫYPl;$gI$3ll%=ƛ`^KHX*, O,5Jn~݀g-XqsWb:0e>Dgɨ1pR,Y7ۗ!c!~MҠmg oZgb ϖa,Hj|kB Y3(r O 9n3j6CseL YP6Mk&o f ~l1@6~B>f8E_l-%95!C5 DHR i K6L.[O 9Dwl~F,T/0ACi/ OQEzg+a\pVL/'0! /u[6Q @<Sp 0nsa-.:a_\loK_>2$lCcp1 cCc5Bcl|$k,#Z {Pu[+TR-uP,u+vvjg @ tJH>SJJܤ{[ B T{wgN[?hN&`L\cnHQNT?p2⃓ZTu<4'q")P_e}YOLQNTp- )uӜB@<_.LQNT_p d5'%ˆRcrnI')1ҕnQ+SD 'aNͥt٤/ws:J=7E9Q}{tN2(n{~09=!)ʉͧ~N6v;S5b89Jv0:BN(Rw('j,pA@.ɛ<oPqԹ+6Tc8يjA*w,j>pVVǥ('jpBd)j?ÕX-؈KKQNXp|g2N_/nv`Klb('j|p(?Fw@=vA#:UD~A'C>yۡ :U5l8YOd-ˣ Hy p=ZR5m8iUq-9w h$uWOxc'j΀X;v hhRj;V1 3IɅNPs[ܹ;a*l` \()ʉdO?i~KOXأ1MNx> wNRX (uQr 'RƟXk] U~y1FD͙N1JA~Oϭ=oQ( &'$|prj\Cs {(tTq&9ڃi$v+{DrƱyƼJyHn86Ne%-_X>Lɖ۱pxÛ*}8&dm *^%/ ܭ{4Wn1nu`/K^nkmIwoL˭[B)Wy>3h>?gy(m#=ߝQ;~Gb?-TyWT Q>gt^y_xoSᝊ=5foIGp58f:_ MrP;,,}p5X{c{[,>/b_8Z>K;16cl2wONyBFzpb}'Fwg/3YvXvv>e9ó_݌݇oGqmlm ޔHzW~ VޮM\z?!ש[G~r*Vٞ>U՗ʍӧ:@"TՋ2P<񆃾/Yu+S8PuW^QLX}τד/ R<_DLfk:B( < `  xhttp://en.wikipedia.org/wiki/Open_system_%28system_theory%29xhttp://en.wikipedia.org/wiki/Open_system_%28system_theory%29Jhttp://en.wikipedia.org/wiki/OrganismJhttp://en.wikipedia.org/wiki/Organism`http://en.wikipedia.org/wiki/Dynamic_equilibrium`http://en.wikipedia.org/wiki/Dynamic_equilibrium Equation Equation.30,Microsoft Equation 3.0  Chart Excel.Chart.808Microsoft Office Excel Chart  Chart Excel.Chart.808Microsoft Office Excel Chart   Chart Excel.Chart.808Microsoft Office Excel ChartD/ 0|DArialgs b bD0bb0bB 0b"DWingdings b bD0bb0bB 0b Dingdings b bD0bb0bB 0b0Dtgdings b bD0bb0bB 0b@DSymbolgs b bD0bb0bB 0b@ . @n?" dd@  @@`` |Hh3  5 !*%+,-./0124567:9 AFGHIKL!MOQRSTUV[\^abdeg$$$$$R$JLǫx?E$$$$$$2$PO. 1) two important classes of stationary solutions are possible: The amplitude death (r1, r2 or r3 ! 0 as t ! " ) The frequency locking (synchronization) fZ\Z$  ( "*"*"*"""bl""*"" b  " <3   $$$$$$        ! ;  !   5. Conclusion  We have developed a mathematical models of BP, HR and BT circadian oscillations using the coupled LC oscillators approach. Coupled LC oscillator-model can have variety of stationary and nonstationary solutions which depend on the coupling K, the limit cycle radius a and the frequency differencies "kj = |k  j|. Weakly coupled oscillators behave as independent units but with coupled phases. They are subjected each to the influence of the external disturbancies (Fext (t)) which can change circadian organization of the organism and become an important cause of morbidity. {ZZZZ Z  ( "*"*"*"""*"e""         ,    ~           " *1     d 70  `W  aX  Self-organization  Self-organization in biological systems relies on functional interactions between populations of structural units (molecules, cells, tissues, organs, or organisms). . Te$  Synchronization"  There are several types of synchronization : Phase synchronization (PS), Lag synchronization (LS), Complete synchronization (CS), and Generalized synchronization (GS) (usually observed in coupled chaotic systems)H043o.L                    IA2Relationship between entropy and self-organization33( 2zThe relationship between entropy and self-organization tries to relate organization to the 2nd Law of Thermodynamics order is a necessary result of far-from-equilibrium (dissipative) systems trying to maximise stress reduction. This suggests that the more complex the organism then the more efficient it is at dissipating potentials, a field of study sometimes called 'autocatakinetics' and related to what has been called 'The Law of Maximum Entropy Production'. Thus organization does not 'violate' the 2nd Law (as often claimed) but seems to be a direct result of it. D>Z[ u JBWhat are dissipative systems ?(   Systems that use energy flow to maintain their form are said to be dissipative (e.g. living systems ). Such systems are generally open to their environment. LO   6Biological signals    QI-Transport phenomena (an elementary approach) <.((( .  b jX = Xv X = X/V density V = SL volume L = vt jXS = X/t X = (mass, energy, momentum, charge, ...)    " * " "*"G"*M"n    [RJ,Transport phenomena (an elementary approach)>-((( -F Continuity equation "tX + div jX = 0 Transport equation jX = - X grad X X(from kinetic theory) ~ v! ! - mean free pathZZ#ZZTZ  ",*,",*,",",*,", " , " , * , " , * , " , * , " , * , " , * ,",  ", 4 SK&Transport phenomena (kinetic approach)4'(( ( '   The net flux through the middle plane in one direction is j = (j2  j1)/6 = -  grad  = v!/6;?C          ZbTL8Transport phenomena Mass, momentum, and energy transport&9$( 9Diffusion(mass transport) ,  UM8Transport phenomena Mass, momentum, and energy transport&9$( 9"Heat transver (energy transport) 6# 3L     VN8Transport phenomena Mass, momentum, and energy transport&9$( 9 Viscosity (momentum transport) ,! ɱ2    81 ENTROPY PRODUCTION At the very core of the second law of thermodynamics we find the basic distinction between  reversible and  irreversible processes (1). This leads ultimately to the introduction of entropy S and the formulation of the second law of thermodynamics. The classical formulation due to Clausius refers to isolated systems exchanging neither energy nor matter with the outside world. The second law then merely ascertains the existence of a function, the entropy S, which increases monotonically until it reaches its maximum at the state of thermodynamic equilibrium, (2.1) It is easy to extend this formulation to systems which exchange energy and matter with the outside world. (see fig. 2.1). Fig. 2.1. The exchange of entropy between the outside and the inside. P 92 To extend thermodynamics to non-equilibrium processes we need an explicit expression for the entropy production. Progress has been achieved along this line by supposing that even outside equilibrium entropy depends only on the same variables as at equilibrium. This is the assumption of  local equilibrium (2). Once this assumption is accepted we obtain for P, the entropy production per unit time, (2.3) : dtSi =  J F where the Jp are the rates of the various irreversible processes involved (chemical reactions, heat flow, diffusion. . .) and the F the corresponding generalized 266 Chemistry 1977 forces (affinities, gradients of temperature, of chemical potentials . . .). This is the basic formula of macroscopic thermodynamics of irreversible processes. P  "*"*RV  b` 33` Sf3f` 33g` f` www3PP` ZXdbmo` \ғ3y`Ӣ` 3f3ff` 3f3FKf` hk]wwwfܹ` ff>>\`Y{ff` R>&- {p_/̴>?" dd@,|?" dd@   " @ ` n?" dd@   @@``PR    @ ` ` p>>  (    6  `}  T Click to edit Master title style! !  0  `  RClick to edit Master text styles Second level Third level Fourth level Fifth level!     S  0@ ^ `  P*   0 ^   R*   0$Ɔ ^ `  R* H  0޽h ? 3380___PPT10.  Default Design 0 zrp (    0d P    P*    0     R*  d  c $ ?    0  0  RClick to edit Master text styles Second level Third level Fourth level Fifth level!     S  6 _P   P*    6̖ _   R*  H  0޽h ? 3380___PPT10.@>` (    0 P    P*    0     R*    6 _P   P*    60 _   R*  H  0޽h ? 3380___PPT10.~y]b tl (  r  S  )c  r  S pG     <,` r lMATH/CHEM/COMP, Dubrovnik-2006  H  0޽h ? 33___PPT10i. +D=' b= @B +Pb g_(  x  c $A`  r  S Ad    <,CZ[A YM o t i v a t i o n33 H  0޽h ? 33___PPT10i.jV+D=' b= @B + b `G(     6W "<  'g  9  BY6 p~  Non-equilibrium may be a source of order Irrevesible processes may lead to disspative structures Order is a result of far-from-equilibrium (dissipative) systems trying to maximise stress reduction.+v33v33uv333v3333$3333m6i 6 3H  0޽h ? 33___PPT10i.Ō<+D=' b= @B +b  @(  @ @ s *   "  @ 6$2S,  (i = Gen  Con)>   "H @ 0޽h ? MMM̙___PPT10i.R+D=' b= @B + b    8X (  8 8  EBCDExFA^^OSSc\f95|n@Y#, F Q=9 7I_Rl\xciipw&=go}[v{rnee'F_U2n2P&{R$YQXBl - O'O'.I@<OBD@                               `Granitec"$  "X  8 <Č  ZSystem  8 s *$ʌ} Y  FEnergy balance  E = Eout - Ein ((((( ((( (x       8 B،  [ Environment   ~ 8 HZv @"  Zy~ 8 HZv @"    8 0 ތj $ UEin$( (  8 0 gJ{ VEout$( ( H 8 0޽h ? MMM̙___PPT10i.rA+D=' b= @B + b    4f (  4 4  6|S"ܠܠ ܠ    4 0> W: JEnergy   4 0LA) w  ZEout(    4 <ĐT   Closed system (no mass transfer)"! ,  2 4 0X   $U internal energy, H = U + PV enthalpy Ek kinetic energy Ep potential energy Q heat flow W work Ws work to make things flow H  b  b  B                P 4  Bo "<  PT &   RE = Eout  Ein = Q  W E = U + Ek + Ep*` ( ( ` `  ( (VZ 4 6(os T3 C XE = Eout  Ein = Q  Ws E = H + Ek + Ep -  " "              4 BΊ6 -   $Open system (mass transfer included)"% ,  H 4 0޽h ? 33___PPT10i.P"+D=' b= @B +b .& t(  t t  |BCDExFA^^OSSc\f95|n@Y#, F Q=9 7I_Rl\xciipw&=go}[v{rnee'F_U2n2P&{R$YQXBl - O'O'.I@<OBD@                               `Granitec"$   a  t 0 ZSystem  t s * ,  nhEntropy balance eS = Sout - Sin S = iS + eS$(( (((( ((( (( (((( ((       t B PY  _ Environment   ,  t <% dE  iS e" 0vf&.~  t HZv @" /&~  t HZv @"  gZ   t <,a ]Sin,(3(3   t 0h  k ^Sout,(3(3 h t <  8  8iS entropy production(EP)T L      t s *' # 5 ' MaxEP MinEP((B     t 0, [ _ EP ?   H t 0޽h ? MMM̙___PPT10i.rA+D=' b= @B +} b p$(  pr p S 2 `}   r p S 3 `  H p 0޽h ? 33___PPT10i.y08+D=' b= @B +} b p$(  r  S T9 `}   r  S (: `  H  0޽h ? 33___PPT10i.ྡ+D=' b= @B + b 40(  4x 4 c $hZ'g{   x 4 c $  H 4 0޽h ? 33___PPT10u..`+Z+D=' b= @B +* b *)044L )(  L~ L s *D `}   ~ L  BtCDELF$vd @5Nj )@@BL\gtto h+C@      "B   @cD L  |BCDEF@vd @((6HWg`F% *o Oh&2?KWpp(5{?oMid_QQXZ @             "B   MAR L  <BCDEpF0vd @@u1KeSA  g77{+&'@         "B    L  r;kBCDEF<vd @%%OuSeS\\Gq++) !4D N]htT!^ kjj{'R- \K_5@            "B   2F   L  BC@DEFDvd @++z:]%Vl S1|Gzz(;C5c@|<:4.,$@NqpqpyX?'xS}} @              "B   t   L <h@*' C1   L <(= C2   L <dR2W C3   L <`6lS C4   L <:\  C5   L <8S W:  C6  L BCDE4F J}RqWbbXxD'' @    E L BCDE4F PTnz& @    R[RG L BC2DE@F E2M&b^ S(^OY~v${  @     ]< L BC@DE(F 8+|(@'n., @   ` L  BC3DEF^vd @==kVlnY?#R1|!V1 %  p# 11\e+lnU""|"G #|  +31(8!,0@                    `"B    L BCpDE@F  z%t1t?nJ`dFw=;;/Mp @     0 L <kx< C1  L  ~B=CDEFBvd @((3V4<7&i : j{$2U|@Xr=74a  3 @             `"B    2 L 0c s  ES XB L 0DpS XB L 0D"XB L 0DXB L 0D}-LB L c $DCCXB L 0DjC^R L 6GVHIV -c dR L <ZGHӔI  db L@ <ZG&HIp~s -   L <s MZ C7 2 !L 6 , E7 2 "L 6| SF  E3 2 #L 6D &C E2 2 $L 6 @ E1 2 %L 6  )F  E6 2 &L 6VC E5 2 'L 6 )@ E4 LB (L c $D@CCLB )L c $DVLB *L c $D@ LB +L@ c $D@ LB ,L c $D S) RB -L s *D I ^b .L 6GuHKIh,I /L <Ԕm=  P Graph theory   0L <c Vg 34$   1L <   FGraph with weighted edges ! network<$"  $ 2L <Ԕ9 K RNetwork theory  3L <"  IGraph  4L <&  G = {gij} connectivity matrix$0   H L 0޽h ?OLLL LLLLLL &L!L.L 33___PPT10i.jc@"J+D=' b= @B + b D0(  Dx D c $P.'g   x D c $$// `  H D 0޽h ? ZXdbmo___PPT10i.r +D=' b= @B +} b p $(   r   S  `   r   S  `  H   0޽h ? 33___PPT10i.ʌ \J+D=' b= @B + b 1) H(  Hx H c $|N `/    H 60P'X  L Bio-factor    H 6\U} JReceptor    H 6Xp} JEffector    H 6]5  L Bio-factor    H 6\b9 j JReceptor    H 6g9  JEffector   XB  H 0Dop  H <$m0 q -message XB  H 0D3Ԕ}  H <p` G 1 Bf increses XB  H 0D W  H <l9  5No change in Bf XB H 0D3Ԕ d 9  H <@p J    H <(u *  2 Bf decreases XB H 0Do j  H <| ]   -message XB H 0Do}9 H <(w{ 9Corrective response XB H@ 0Do6 g9  H <hR   9Corrective response  H 6| !  QOscillations around equilibrium 4 H <ܒY@ JOsmoregulation, Sugar in the blood regulation, Body temperature regulationb        H H 0޽h ? ZXdbmo___PPT10i.]wqT+D=' b= @B + b 8<(  8~ 8 s *Z'g*   ~ 8 s *@9,  H 8 0޽h ? 33___PPT10i.EF#k+D=' b= @B + b  <J(  <~ < s * `}   ~ < s *p `  2 < 6P   :  < <Я  `  h,,,  < < WH  i, gij>" * " * &2 < 6L 9  TPhase transition   < < Ð  ](Kuramoto model)    < <(ǐ  _ y!Synchronization Self-organization""  H < 0޽h ? 33___PPT10i.EF#k+D=' b= @B +  b   `XV (  X~ X s *@ѐ `}   x2 X Bvd @" Wx2 X Bvd @" t 2 X H|Ӑvd @" J  Ei x2 X Bvd @" C x2 X Bvd @" :52 X Hؐvd @"  Z  Ek 2  X Bvd @S" ?2wr x2  X Bvd @" 6 :v x2  X Bvd @"  X :  X B$ߐoI& Ndxk/dt = Fk(xk, ck, t) +  gik (xi, xk)&(         & . & . & . & 0   X <tސ_  dxk = the state vector of an oscillator xk = (x1k, x2k), k = 1,2, ..., N gik = coupling function Fk = intradynamics of an oscillator &     " @ X 6Ԕ & |Diffusion coupling: gik =  ik (xi  xk);  ik = NxN matrix?&.&.&.&HH X 0޽h ? 33___PPT10i.ck!+D=' b= @B + b '(  x  c $8 `}   H    6 S" Mqi   Standard phase space: s(t), sn = biological signal dts(t), sn+1 = rate of change dts(t) = f(s,t) or sn+1 = f(sn) Free oscillator dt2s + 2s = 0, s(t) = Acos( t +  ) Complex phase space: z(t) = s(t)  i dts(t) dtz(t) = F(z, z*, t) or zn+1 = F(zn, z*n) Free oscillator: dtz = i  z , |z|2 = const z = r e i , dtr = 0, dt  =  s = Re z = r cos PP          "  " " "*""*"*"*"*"*"*0"*"* "*9"            5            XB  0DjJ]  CXB  0D1C C  <THm  ddts sn+1.    <Np jW  Ns,sn d2  <e3o RB  s *D RB  s *Dg  <T t  ; z - plane  RB  s *Ds 6X  0    <a$   <P;7 br0s(t) = r(t)cos(t),  =  /12r b"b"b"b"nH  0޽h ? ZXdbmo___PPT10i.}`,~+D=' b= @B + b ^(  ~  s *<ג `}    0 TA  ?z   H  0޽h ? 3333̙3___PPT10i.}P)+D=' b= @B +U b l d |(  | | c $ܒ@}   ,Entropy production in a driven LC oscillator.-((  - | c $/%   Biological systems are generically out of equilibrium. In an environment with constant temperature the source of non-equilibrium are usually mechanical (external forces) or chemical (imbalanced reactions) stimuli with stochastic character of the non-equilibrium processes.H7b833 B | 0d% s  Stochastic (Langevin) description of a driven LC oscillator representing stochastic trajectory (dts(t), s(t))) in (r, )-phase space@d n;(        | | s *\ 7 " dtr(t) = (a2  r2)r + (t), dt(t) =  (t) Gaussian white noise < (t) (t )> = 2d(t  t ) u    "  "  P              H | 0޽h ? 33___PPT10i.'+D=' b= @B + b $ (    c $9   jNon- equilibrium entropy J  S BC.DEFbAA@@%5 [rq6Ieh@wI @d2w%n([.[.7+-% wwqqdedeT3f\@.,$@%  09v[eLM%.0@                     `Granitec"$  wR XB  0D3Ԕ}XB @ 0D3ԔGS   < vdtSe6    <$% p  dtSiF33 3333 33 v   6h03 '  *dtS = dtSi + dtSe e" 0 4     &   67  $Si(t) = - +"rdr p(r,t) lnp(r,t) a" <si(t)> si(t) = - lnp(r,t), dtse(t) = dtq(t)/ T = (a2  r2)r dtr, D = T p(r,t) is the probability to find the LCO in the state r p(r,t) is the solution of the the Fokker-Planck equation with a given initial condition p(r,0) = p0(r)t "*"*"  "*"*"* "*"*"* " (              '     5  d   6DR  h"tp(r,t) = - "rj(r,t) = - "r[(a2  r2)r - D"r]p(r,t)5"* "* "*"*"*"*"Z        H  0޽h ? 33___PPT10i.m>+D=' b= @B +?b VN (  4  C xcv @33 "`    M  r  S dd `    H  0޽h ? 33___PPT10i.hu+D=' b= @B +b `0(  `x ` c $$j,Tt  x ` c $jm  H ` 0޽h ? 33___PPT10i.d01+D=' b= @B +b d0(  dx d c $+B#style.visibility<*%(D' =-s6Bcircle(in)*<3<*D' b=%(D' =%(D7' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =-s6Bcircle(in)*<3<*Dd' b=%(D ' =%(D' =4@BBBB%(D ' =+4 8?XCB ppt_xBCB ppt_xB*Y3>B ppt_x<*D' =+4 8?`CB ppt_yBCB1+ppt_h/2B*Y3>B ppt_y<*D' =1:Bhidden*o3>+B#style.visibility<*%(Dd' b=%(D ' =%(D' =4@BBBB%(D ' =+4 8?XCB ppt_xBCB ppt_xB*Y3>B ppt_x<*D' =+4 8?`CB ppt_yBCB1+ppt_h/2B*Y3>B ppt_y<*D' =1:Bhidden*o3>+B#style.visibility<*%(Dd' b=%(D ' =%(D' =4@BBBB%(D ' =+4 8?XCB ppt_xBCB ppt_xB*Y3>B ppt_x<*D' =+4 8?`CB ppt_yBCB1+ppt_h/2B*Y3>B ppt_y<*D' =1:Bhidden*o3>+B#style.visibility<*%(Dd' b=%(D ' =%(D' =4@BBBB%(D ' =+4 8?XCB ppt_xBCB ppt_xB*Y3>B ppt_x<*D' =+4 8?`CB ppt_yBCB1+ppt_h/2B*Y3>B ppt_y<*D' =1:Bhidden*o3>+B#style.visibility<*%(D{' b=%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D'  =+4 8?\CB#ppt_xBCB#ppt_xB*Y3>B ppt_x<*D'  =+4 8?dCB1+#ppt_h/2BCB#ppt_yB*Y3>B ppt_y<*D$' b=%(D' =%(Dt' =A@BB7BB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+4 8?fCB#ppt_w*0.70BCB#ppt_wB*Y3>B ppt_w<*D' =+4 8?\CB#ppt_hBCB#ppt_hB*Y3>B ppt_h<*D' =-g6B fade*<3<*+p+0+ ++0+ +$ b @$(  r  S 4W `}   r  S `< `  H  0޽h ? 3380___PPT10.iO$ b P$(  r  S ı `}   r  S hű `  H  0޽h ? 3380___PPT10.iӕP b p\0(  \x \ c $tʱ `}   x \ c $H˱ `  H \ 0޽h ? ZXdbmo___PPT10i.ZxP+D=' b= @B + b @6(  @~ @ s *б `}   x @ c $ѱ  H @ 0޽h ? 3_j___PPT10i.u@ +D=' b= @B +} b $$(  $r $ S ڱ `}   r $ S ۱ `   H $ 0޽h ? 33___PPT10i.͌:+D=' b= @B +} b ($(  (r ( S  `}   r ( S  `   H ( 0޽h ? 33___PPT10i.Ό@"+D=' b= @B +$ b l(  l~ l s *H `}    l 0@d ,$D  0 0D Every living cell, organ, or organism generates signals for internal and external communication. In-out relationship is generated by a biological process (electrochemical, mechanical, biochemical or hormonal). The received signal is usually very distorted by the transmission channel in the body. 2 6 3 J 8 ( 6 1 EH l 0޽h ? 3F433  ___PPT10l .o +x wD@ ' b= @B D' = @BA?%,( < +O%,( < +Dn' b=%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*l2%(D' =+4 8?dCB1+#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*l2D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*l2Dn' b=%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*l2h%(D' =+4 8?dCB1+#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*l2hD' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*l2hDn' b=%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*lh%(D' =+4 8?dCB1+#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*lhD' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*lhDn' b=%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*l%(D' =+4 8?dCB1+#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*lD' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*lDn' b=%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*l%(D' =+4 8?dCB1+#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*lD' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*lDn' b=%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*l%(D' =+4 8?dCB1+#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*lD' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*lDn' b=%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*lE%(D' =+4 8?dCB1+#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*lED' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*lE+ b Hc(  H~ H s *B   ~ H s *h `   H BC{DEF{zvq@ c"$ `w  H ZBChDExF^^;8r]66j>V\+%1&8BVevtbL6!-2n;_@UOGU.`fosx|s&?Ob9ojIdT`;5q+}!VG\.A.JHRb[o_hh\_&AD@                               S"  P H (BCDEF<## qrSH8,  &:zHrgZo ||ZZZZ\<$ @             LB H@ c $DS  LB H@ c $D  LB  H@ c $D LB  H@ c $DC X  H 0BF 7 RB  H s *D%    H <u  ES  H <b   TjX$  XB H 0D 9  H < M6  EL ^B H 6D1:JS  H <lkJ Ev j  I H# #"  I H <(? I X   @``B H 01 ? I`B H 01 ? I`B H 01 ?  `B H 01 ?II H <*% E  EX  H <4/@ ` eCurrent density (flux):   H H 0޽h ? 33___PPT10i.  ,1+D=' b= @B + b  L<(  L~ L s *B `}   ~ L s *DC  H L 0޽h ? 33___PPT10i.B+D=' b= @B +  b .&0P(  P~ P s *Q `}   ~ P s *Rp `  Xr P 0 Xr P 0gd Xr P 0  XB P 0D`pXB P 0Dp S X  P 0`(X  P 0x7A J E   P <dV H!"   P <[@   H!" (  P <PZ   j2 = v(r - !)Z """"2 P <g;[ j1 = v(r + !) b " H P 0޽h ? 33___PPT10i.@Q+D=' b= @B +m b |@T(  T~ T s *hv `}   ~ T s *Ly `  RB T s *Dodd RB T s *DjJ`jj R T s *3 d d T <G=?H~3 j 8 T <{C"?#   jD = v[C(x - !)  C(x + !)] / 6 = v( - 2 ! "x C(x)) / 6 jD = - D "xC(x) D = v ! / 3\ "  (((( (((                  T <V wv  H!" RB  T s *D2gg9   T <V tv  F! XB  T 0D) dg) XB  T 0D) gj) RB T s *DIZI T <t f Ex  T < C(x - !) :    T <  C(x + !) :   j  g  T# #" 0  g  T <諳? g  X   @``B T 01 ? g `B T 01 ? g `B T 01 ?  `B T 01 ?g g  T <0 w aC - concentration  T <'  TCv/6 H T 0޽h ? 33___PPT10i.@s+D=' b= @B + b PX(  X~ X s *P `}   ~ X s * `  RB X s *Dodd RB X s *DjJ`jj R X s *3 d d X <G=?H~3 j  X <ѳC"?#   &q = C v[Ek(x - !)  Ek(x + !)] / 6 = C v( - 2 ! "x Ek(x))/ 6 q = -  "xT(x)  = v C ! c / 3 a     "   ( & ((( (((6                    X < سV wv  H!" RB  X s *D2gg9   X <۳V tv  F! XB  X 0D) dg) XB  X 0D) gj) RB X s *DIZI X <4 f Ex  X < T(x - !) :    X <@  T(x + !) :   j  g  X# #" 0  g  X <d? g  T  @``B X 01 ? g `B X 01 ? g `B X 01 ?  `B X 01 ?g g  X <` p kC ( concentration ) = N / V  X 0  2c = "E/"T = specific heat$"   X <p  cCv/ 6$  H X 0޽h ? 33___PPT10i.@s+D=' b= @B + b  `\(  \~ \ s *T  `}   ~ \ s *  `  RB \ s *Dodd RB \ s *DjJ`jj R \ s *3 d d \ <G=?H~3 j r \ <p%C"?#   xy = C vm[vy(x - !)  vy(x + !)] / 6 = C vm( - 2 ! "x vy(x)) / 6 xy = -  "xvy(x)  = Cvm ! / 3`g"*     "             (  (  (   (  (  (  (  (&((                        \ <V wv  H!" RB  \ s *D2gg9   \ < V tv  F! XB  \ 0D) dg) XB  \ 0D) gj) RB \ s *DITZI \ <4 f Ex   \ <8 vy(x - !)0  :     \ <=  vy(x + !)0  :   j  g  \# #" 0  g  \ <hK? g  T  @``B \ 01 ? g `B \ 01 ? g `B \ 01 ?  `B \ 01 ?g g  \ <N w aC - concentration RB \ s *D''I \ <R Qy  \ <V'  TCv/6 H \ 0޽h ? 33___PPT10i.@s+D=' b= @B +} b P$(  r  S a `}   r  S b `  H  0޽h ? 33___PPT10i.`"+D=' b= @B +} b `$(  r  S n `}   r  S n `  H  0޽h ? 33___PPT10i..+D=' b= @B +xXOA3(` xݓ bQ0!iQNx F="/8y27/5n٭-l kv7 />i| YtXK4 >NiJz bd+lHb|Q>e]xNUP-:`& ;b: Ae;;\Uwf`ؖC3[-Oຣ0 _9Ǟ9~lzkz˦*J;TT'(/?PWBqǿoɹvߘGy>9@k+'O$b/Q Ky67)n)Y^I>]t&H'8}jCtK)@&ŤRֿ}C/ wpb({Ǩ-|;6?jo~ VNxHaL6h72}0&ϖP ТT`/Ԩ3ryyyhyhyh949g6Q DN/}zUAjT멾vhI i!?"?SknSCo(vG{p `ΣLV_OJ z~h`?Z/+>+Y4 Zqw 1UÇ<~|c/ VU3m 㼩79DaEkvqa)>wz5tq,>H=Rd/o:m4ϸC4r).+G"]׉tS,4hq FZX qs JŪ}'..bo[ /sy$J '.%G"Mr׽>7cOIqV7x[G:^`ț>dY@FM0mkY())YiT񩅌v_*]OuN_*_Ex ՝߫꣺gAGaH r "^130Ѡ#]̪<(]6(#$1UF~w_z{cɞ_oWxam$0܃qGD&h˻+׌lgĹXi?ӄ$[If7Sa_/<@:`.Xp J8 JAwAeB#A8 =A/p4(uy;t^Tvw}H:˹M_@M`8 @U`8FQ;`4cs;jl'I`2NОId0l0)`>8U|}'S^ 92j'ͧf JQuPG;PQ K};!wEmtiCLuOQȯ.|U~nͰk4Yl]S?amM]C|rf(s.&Mgp!)~8( w<̮M=c^oc~r<տ=MfPf / T*?/{PeOJSꖬO_]S/;ݶϲƪA̓2>cHqAg[ qJGE=sb?b!'BA|3ًܽ3C18 ni2~$.QX!qy* T"￳6;g춷ţN6Kլۇv_)k^aIƪt]qoMDgk8g%nhg">v=kٜ5ҞڽXg\@9;oʳ}VsYEȇ>\:G}T&z|z:LTR|G+BH<`ԆxG[So\9ŷP.@\"Yc|p !䑴rn?sZxvU]t݄LyeIIu:FG&u|:F@Z6ږx۵%n-aފҖ`bn.CN0"$Pf5BN*AhGq;?߁>Ix%PF Ub:6v(hÈ[P[X۩7hUR +C>B?Ǩ>u3R2h;6 -:4:ANPw  D%|pKgOX!,?cIH <5'.řw|=ko3$:PI+IQh*CZ Od?pk-a%n(i".438 ʹ rhFKH߀U<ψ^*?榥cڋp.i#Kt:Ã^8C>ʃ_>fys(dԣ;K!ؒvWmk]ett=aI>D݄X[Ckmj%T V8cЯ!l > ʼn ~!>F/M3YFٟm,fdM+3id4`Y(,FfE|/z\ ~Gp AN= +HP_H\lDp_5]M=2GnWi ↟{` .eP{olh N."| j_CʨJ17zCEt,B9dk-}i{,'Lmu?Γ.o}`Q!'$'َcG+v؎sڽ3';)v#ӏۚ;Iv;>f;ڎ cM{%';)vAcY=?cfnvS%r.o!mGqW]zNvRi;Bly^J#dGرb;ڎ0kۗ;ڎ0zقfnvS찒;bl؎M[M9aai;,cƖaI#QvDcu{I#툰oJIv$"2LNs=㍮b+_U-WXFd 5?\]4IDxR Vip5AN¾[đǨ ry(Ep&FV0F#Hs0U89>zy!y3GC͞T#a•MmΏ_MSb#U4އoz^caYR5sKmq' 6S։1g^#g&vm+Xה[ɥwF̶J؞a-oҚkzᗜ{,| T<,,xJrHyН繖l'RdCؐ4֥wLCfBhPʩO0 \?Ĉ^1'IWw%i2 ')Xy.c{ kPg <*Cd]7=)\ǵ$;rx%>fI#$ zK@%ޙ:ΉD']JWu"#%'msD2JB:3-3%!yE:y, a;W$γ'RWqi1+ u!Wvfg.߷}ۿ3gBT_!ޗα[_.Dd4#x"-CQs!-1 +4~b)ӷRH|ϔuS(7MP_=]eivD>7Mp1FS#覘#/Rk'5[" d$*̡uȗ1S:k*l2|HNgګ0{ مu` L$Ǜ^KZ,J]}S{A\}%Z@YȞiVh - kYX6 WYh;蔮.9RjԲAvjN-,]#V-۪e WHI6iYʊu\iٺoUǜnJ{i}\Jvuc]Gx>7)G{͠ 50!#ݕ| qg[7h0yP0C-t1,7GdeShB*w., ^gdl< K%h]rq\j oĸRAn2.]Y/,hVq|hF7c,6WphRNu xmN8A&=ظY ğFڛE[ *# &ʝD^C/b|C8SFBYQl9Y.nZbiT4ZӍ?ˑ6!hac/vlbFu=֮jZ.5qkGtmSUInMJQQqp-5LiC| tOFAjl&Cb!z> zh1 _t*0Zc3URt`fƂ5J8̉`Fs hjlf!8KtL=X׿&pf@F46s1Ht+l()VtRt[ n(^Mc3{4JvFO46xRtnͼvi`F56Q:G`f>Q:aˈf 5J()C)Gj L_Gt 0Jc3`Fc@fƀCL'ilf Q:,pffChl pFuAc3uVts46sXQ::\Q:ďO46#pF׀ilpF\or !~ oC]`Fil`FO?jl FσW46֧>5y)@FQ}Tg;SaЮkׂ;4Zp\IZpZpƯf~-\wk].\] Ֆׂʂidkׂ˯_ .\~-Zpj_ .u.Nּׂ#qkMml`=ւ ·+A!^ P \j-tZp |O:k)cŎ_Zp/X(wZpKp2Zpǝ3WA^~-oZpox8kkQ}15 }XvwCZpBE Wq8O!m=XkmCػ)-Hua~BkE翇kwi-kE_ .ׂLZpz;:DΌqf:*fx\ tu~3;;]dk_2lٜOe$˖$SC{ ?98( RP-:9Ƅ)1%8nB`ahkN7ۙ}ٹ}w͟<c6" b,hˆ< !} J3 fn F Fs(6[OǾ`{K3]E3kLϬ5v>]V c*?Ȝ{0kbAv)ڈp'(|A2| #a7^/8Fmq e,E0V1a` bb5A9!Cq23 q 4!΀8bYςql)԰vWÈP7T%5DP>Xx`a:Hj!;1SƉXA<~bmYȖc;)<ҳ1{uI'+XGmLJה)zE~ q˩}Լ%\s}̪d3f~ >3:魌C3ldgo~￾x_2OBYҎY|LV6F:Xgg^??:-NN}e{>^\lӠ3n:o;ѣ^ow/U-d/Æwlޞ &ZsWOWmK{gZ6PR5-]6]c#k_^YcDiY-4v Az{/(c]K ݒӐRfQʬQ QTGq~0Pcpg}:^ch V}_ QĄ;  ą%pwwma7^zPc :Ps-!B1 lKӖvͻ\ c>i~1FvS5H} oZ3vj2GRaRGœ==#{2 \ _nQffNxUܫ:cƣB'q,6#W0BKaƑ>[#JF7&)EJNzgOퟆ9pNd|T>fĪ6voaL^m8:[Hotuu0ЦA[6s(dGa BfGwXk`shmv_/>wyR Eq큟t&VSq4A3P pjB1c:u4{aDʁEA[Co}eeti}tT4؊8N3SΡ rfa5|fG XF`0JVF-A4J qe8kx1 `oחŴҸHڣW41k-lXp0A5+K&|^K\w5;zuim5f7QZ=QNUY"6z=vᄌXo;6?m<x˽tYb97A7ݤ o> IIfM^s<$I=[<I)xx''=O،8,y$$ǝ}s3_?x;~_;I*HJ<]{VTȢw{$rK^喧i}+~ڽ( c$:kw'?i˵֒|:g$3Zm}YJBӡ.T #ҺP)B)Y҇YMoa|r\O8Ý=' ||DO]e_D$(qt|# B>E|d4*d6},#>2YG̸e)YGV#*|d>*YGV#պd26j:D :ҏ1JѠ*g\iA\66G) 7PU ?&URfTc-wh5 _p[-V9KQeBF b} ZRkȞbd~Z׊tzl+b3vOЪ"uJCV0b$  ،@BrH^=E1`HFHνGÈVH3{S00S`<  nܺ7 6$}`QDtaK/N0Cd8>D˳%C/k_%ķiWyC@^/ r_ƚ wAٔ2~t 'kPKKhzch7༘8={>̫B`'h {PLs4=aw0Goc\Qf !4;g,de ^ի!0s:V#:"M`5olr8ebz(ߋYlŨwit4[Y4i^ҵ?~cƎƮ&.:P,6×|޺U>ה ˴]Vy1r5aPemp͊& V&L~a=lqVH/$6A-w0ѼbޜIމ< &O&zlB3'}i>}£?;uU3lWB<7MPNdҾ`;1Y2eowKnff"܃hWm`v8[m߱ Ι\8_cZg?Dv.*מJPF,G6 Psp3=D7_EqPSYHD6:/v8p쿆~Ô{eBo ȿ8l#[؂<_AoIeD!3 yo Zླ@]}#:К,TJ"w6溳WjPMm;Qws_ƻILgB)>s/E(tg Ϡ>Jh> g V3tBľ~~.vk:ގb\dt.D;8GR^sIa@r(Ů';@G.3Y ./4 x} Tŵ~}陁@v@"Axq 0pIfh/&3&D(Ly'Eј\sjudM {nU}nsV5=\a wzc,l,3A l8wz{{=b` K̊8 ۍP6YH_oãirS!}#[V:7Zf,uK(17gycEù95_܆Rv.y, W"b?+<y.l<WC3[s)-%:f]Q$ 6҂ Hu~8,'tֺT9;jt[)3$ x~zFk<p~TJKfk>SrߎZ%ӹpGה= R%sU7=TYDFi[-p_526bˆmg[u}Dc%8g3t>˕l$4NdIm%8tfFYl)8hlD(-4[V[,AJt zJ&{.Agb e9gu{Krc :%,ZQulam[4^;(JZVrO(ԏsΔ[>|B 򘯜NӳV]~~:}Ӄ-m/mB~SXʃ yQ 4L,m'Lڞ mz"e=P,+ KC%G1$SQlM(}f`opv9WT$=6CӺ=a|9p>ЃiTCY!\n-fNeh?:G<hMGY+xiY_vŎ&8,βJ*oe9=@C8CAڸcuWGwqS9ۊ3gR,Z 9vblثgZmyp50J@#,2kأ3dg9k1 ˡΨybSNɤCգtXd0AQ8K OW'O78M3J?%/8/adKd2ɱ5c\=J e A/AəeQ&G/mpvs`فw쌧|w&v]Yڧ҅Rw2|a%ӂo:8u+ӛd}H6V w8! T8v CǰZ ֗n-X΄56 4/Ù.P};.,X f6, p{bnO8%o΂OOOUC&;k@/awpD[ ꌽ%xJꄝ$ O|tO_$(^$!{ ~K0I_}{s$q׊ELi'?$1o|(ю}s$I#;{$I2񋯟۶$)ִn?IjH2ixoL4I~Gi2$vQNVTuķŹ6>ήI&IIdyYt^UsHRO~}׮$kW?z3[cX\q{wWL;)pe_E<o->[yOޜxNi^79i^`8xw}^}a~g4/0\ ӿ/ xC2$yn鍟;rH'o~>$#:*䝞L#I/;lJzӔ4%18MIJ0%18MI NSӔ4%9LI{SӔ4%18MI NSӔ4%)8LI NSÔ4%18MI NSӔ$Sa%WƆmJfdک$:2gju+O-\x #x IzlE!C?8Ml8``*q}.4M>+~y< zWB2lRIIUf,tYG}dYGy>)KȒ>G!3nYGV#|d>GV5Ț|d.Y؍W/Wh(A*GCLy@#ZeCHEǴ<5kvbχ#۱:ܒoBy-`8˥IQSX "[,6 zBsY(8'¢Ԑ.5,{&{Pc[v: 6=ko[_)^?",рf4 v1-kU1`hFh;NZQRbThFF&hUJ!}TAcP$/ڲٝU jc?UW1H<CC1y 7b~ccHxx iCw/x*C!cx\sfNGR!QKiBB&!cxT}Kê=y M_UCsǰqX&G?yCѯTcXGٛy{x<5aQV/y8xHcD!{"]oתּLjqD!L Tǣ_@5Lj1B<%QQcxj ێϻxzG5QqQ/oeW1J0yPqN҅ /Ӌ#N/Lwujfd QgG ,,# ^z $~̹πixuPcmmRB'35){ŷ6*\]uTn1?Akrl ⌞Fe줮6W}x.5<΁V٧ T>mF۳ɣ;*i5ޮ ~i ltfti1zm4sFca1Yj@hf^^؀74<|իn:Mr;J#~7a.W9[E?5,m2Ǿbl]ٹLT?VT8 ;7.$dKLdL3׾z*7kClk8߅l)]j}7Ɵ gzٳku"k3Oc r|Q9)s a]<EtA;)Ι pUDu 1-‚]=W==^hpuzaiQ_*s$x%˯ײ,P>[!&LFvpj]M;cf3}CQjط\퐷_xz-b!; ,e[7[>qVStBmG[|r%ߓ|u:f-r=:ϳ'X3y-# /X8;֯`仭s+ej/.k ktKߟfYYX+1ZGNe>p/|_O*<WvnXW[>7\:|9߯%~"9p=__V*} m4+!2#2~_e6~y#5|KLߟ䯰`7m]_ُOً1sG*9Lų~>nF=m{\I8 t@{n~(A8}~gk p{S{Qn>+HebjM)Gvi5ګRZ`Z/L1)ܾg*B YJuV8R6 V>;(E i5 ZRZ?QE N 8[=y$1rW<>ωp(}})_}#}g/yԡOBȞ7}il֔%w%JȣUFfh{80Ts˷:OT<&);֟saia򐔠QS }8"oLfёx~)of;H9Y;{u9 O}g'0 9r)nY_g ?`rXZO5ȁHmqᬫ-[י/+_8yǗ84ʄr?̠538ʯ<>B{FĮ&5gbm8. DqNcb\7^hlS_Q&+}p)alqM?bqL([H^5I`E!!tb%-.]ٹy2DSSퟓYRi|`u0&=ͽEI9X~(+n|Ek3ߺ}/$<)!C灕; n G}r[K:t1crc9XGN#r{BO7n.gjfSOXn I&u,~z~Ќg|r8JoW\2YO};j8ZN!=|<_SHU\Seun ӷFh;غ3'{-pߵ8SsYd#&Mjs-3K4b VLW4Nb"`։~XXW +֭v %O%gY)̞e>-ɭ)4Jrd7Ch F?n4_ܪR f83?薏-!PB><+';pg-ӳx~:}Ӄ-m/mB~SXʃ yQMq_ `x!ezi[m]O6=W}-iJbH#GinC틌4&r~`3}!=aEg;=fOQ eCrm|m>r1"v(.Vs/P;bGӠx*l,xPy1v lrՆMcΦ1c{ɓyS\լ?jA` FtP5``Aեoj΂;oh/mqUJ|=({]Hs9j㴔pqplNjt.1ùИ'u.tBe0@v. cW\({#҄3s]Wu.n:c}\WIilk3_V`1 N ^\|ߩjy=~+ᇛgA/m;UbT+i9T+ r&jp&d2@B\v_&?EQ3JTrQd1ӈ_ZKɌ2N#]NƒxLGΉA/@(D-;S9Y Ûu)gi<{*]XS9Qu}Z2-6#e]:&EFùpgNNc`)Z/)\ a  6q./a@-U޹.,Xv.(WCpՔnH9b1ݨphRށwIDbNPNPN(\Q8:AZP8:AZzO8:AZD%sFIrb(DIR(IDIC(N]Ԫ;(ID-DZ%YQ%r%(wZ%u$QZDtѪuPROJ$Q$A>J FQtI,+nsDĿl챲V&Sa58]8yZZ.~mr>AV7*l %l+01~r6Fl(] ,m#7ƍ cc2koX;g2^Z!/׬f1c3q7njWnZJPøHI>R*}/zl:f~~ }0K[vY2=Pi]f-p|±}e}&`4c o&cY.l~ z{LA~򾦎5_rfG9?jjvۏZqζUm?jj=cۏZ֘Ъ0/0FyA-) jIa^`P/ ZPԢ|¼֩K ZL_¼ּ 0/0yA-$ ja^`PKZe)NSӔ4%)Ô4%18MI NSӔk0%9LI NSӔ4%18MI NSӔ0%18MISӔ4%18MI NS:LI*kJ\)q)jpմ(E&ӌu+O-\x #x IzLb#7?8a` GeR&$68i{qMu\+ hkF=niq}2']G|daYG|dqI,#KR>YG̸eYYG>YG#k5dowfa7Zb_ch(A*GqN!k}*yDˣlH򘖣XIa篧i/.<vBlR,r@k,&FYZcQQjH+vR}/5"h CP?ڣv.hR*O2`b F4(S$Wѕ}n]{р{@3 Fq'xտ @300 hFĨW9 <  xЖ]ǠqP$~ϗX[~*ģa<=<M z*<<$ǐ1D<>n-zg1A<5g6x+U"U!!dPCC1yb~ccT!(xö.y*Qcx\m[K=^GRQQk&QcxT_*<<$91yȋ:c1cxdѯTcxT횇cL#շ%hi.egR{){ȡD-hՑwЀKǙs)8>5h0qIF\'2g%  !6q&#Ad [{##!#"#Ad,L&ad$ Eb~IFAF h0Hj2D{WZd$=d$]d$ IIz$M2$>FV/H9Hdd$ 2R'w$#!#"#EdokL&ed b~IF6)MF jό{$CF"C}V`j<`jL2j45D]1$# #mqMFAFZ&2vjH{HHꋪId5iWG~ڀ3x\m: ~ZG ?gjP15g Y ?+1V ?끟u|\5g5,W**k lY~_K=ͪz׺|50@_Qք_׊W$9b~ ΀?Ɇ_k~ުy׹|5 B_Q΄_|5bb~ ?gos~N<P=~?GՐ~Σ~΄s_ _¯7O ~=]=zzzƷh=כ5zBU/ Sl'[=~?O`~ޣ~ބ_ _o0O ~@%~G~@(%(~;_//x/ ~!}Ki6QodADA ._I7zo47j___o2džho IxZ&M&& K ~s7{77{_67{o67k_L?fJVdKKoU˾Oigv|Y98͜їvgLsEs:G,t-ap` G;0uv'[lԱ{$;vT^ AA{*/<\.c*7X(I6A//l1N(ltغ"3ٳQR9w#iK6[AVWjzqO.L^ħ'x\ītakX1ƶLwujfd QgG ,,# ^z $~̹πixuPcmmRB'35){ŷ6*\]uTn1?Akrl ⌞Fu,R\ߥf9P*aʧz{6yTzgW%ͽ5/m!MN2S̵< Fb'w![ iyf+cr03Na?j>ap^\vɄUȦ.BE9N6vфY6{XyM8y]Ph:N ĪC=8\kB [a+xYU T uGea@|`T +;8vKx(@C{!}Q^لʢ/ᑢHV|=u `:T(=Sj.Po~+Dm2@/m_vۗvۗ>\hTs>l^j`Rsl,jKѩq05ƫXێh5~vڜ05V`˕1 뿬qO|ʼaWw6)({~V mr(0[ @eQмpl313! @{;Z$$-˜2I`kpt*7@6[<BFH0L |ÿOQ`r,6>@Ig[YnZ bC]PIw.egbZOh+'0 `h    ,8@GEntropy Production in a System of Coupled Nonlinear Driven OscillatorsDean MartinistiDean Martinisti40nMicrosoft PowerPoint a @ J@`y @ ,ѻ)G6g  1  x--$ww--'. @"Arial-+2 PeEntropy Production in a    .. +2 OdEntropy Production in a    .Courier New(z(dbĆ-. @"Arial-12 q@System of Coupled Nonlinear    .. 12 p?System of Coupled Nonlinear    .-. @"Arial-"2 Driven Oscillators   .. "2 Driven Oscillators   .--. @"Arial-2 Mladen .-.@"Arial-2 Martinis, .-.@"Arial-2 Vesna.-.@"Arial-2 Mikuta .-.@"Arial- 2 9-.-.@"Arial-2 =Martinis .-.@"Arial- 2 zRu.-..@"Arial- 2 .-..@"Arial- 2 er.@"Arial-..@"Arial-2 Bokovi.-..@"Arial-2 InstituteP.@"Arial-.@"Arial- 2 , .-.@"Arial-12 Theoretical Physics Division.-.@"Arial-2 Zagreb, Croatias.--.@"Arial--2 ].MATH/CHEM/COMP, Dubrovnik  .-.@"Arial- 2 ]-.-.@"Arial- 2 ]2006.-Z՜.+,D՜.+,    On-screen ShowgHome ComputergE0 8Arial Wingdings굴림SymbolDefault DesignMicrosoft Equation 3.0Microsoft Office Excel ChartGEntropy Production in a System of Coupled Nonlinear Driven Oscillators=Nonequilibrium thermodynamics of complex biological networksSlide 3Equation of balanceSlide 56 1st law of thermodynamics (Energy balance equation)Slide 72nd law of thermodynamicsCoupled oscillators Biological oscillators Biological network3 Biological homeostasis (Dynamic self-regulation)  What is feedback ? LNegative feedback control stabilizes the system (It is a nonlinear process) Coupled nonlinear oscillators Coupled nonlinear oscillators Coupled nonlinear oscillatorsComplex phase space5Limit Cycle Oscillator(LCO) negative feedback effectLimit cycle propertyOscillating signalLimit cycle in the z - plane-Entropy production in a driven LC oscillatorNon- equilibrium entropy ApplicationsBiological Rhythms (BRs)Biological Clocks (BCs)4Modelling circadian rhythmus as coupled oscillatorsThree coupled oscillators Coupled Limit Cycle Oscillators Consequences Conclusion Slide 33 Slide 34 Slide 35Self-organizationSynchronization3Relationship between entropy and self-organizationWhat are dissipative systems ?Biological signals .Transport phenomena (an elementary approach) -Transport phenomena (an elementary approach)'Transport phenomena (kinetic approach)9Transport phenomena Mass, momentum, and energy transport9Transport phenomena Mass, momentum, and energy transport9Transport phenomena Mass, momentum, and energy transport Slide 47 Slide 48  Fonts UsedDesign TemplateEmbedded OLE Servers Slide Titles0 8@ _PID_HLINKSA=http://en.wikipedia.org/wiki/Open_system_%28system_theory%29&http://en.wikipedia.org/wiki/Organism1http://en.wikipedia.org/wiki/Dynamic_equilibrium%_ Dean MartinisDean Martinis  !"#$%&'()+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root EntrydO)PicturesRCurrent UserSummaryInformation(PowerPoint Document(*DocumentSummaryInformation8