Pregled bibliografske jedinice broj: 256991
Insight into the Hydrogen Abstraction Reactions of Diol Dehydratase: Relevance to the Catalytic Mechanism and Suicide Inactivation.
Insight into the Hydrogen Abstraction Reactions of Diol Dehydratase: Relevance to the Catalytic Mechanism and Suicide Inactivation. // Journal of the American Chemical Society, 128 (2006), 3433-3444 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 256991 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Insight into the Hydrogen Abstraction Reactions of Diol Dehydratase: Relevance to the Catalytic Mechanism and Suicide Inactivation.
Autori
Sandala, Greg M. ; Smith, David M. ; Coote, Michelle L. ; Golding, Bernard T. Radom, Leo.
Izvornik
Journal of the American Chemical Society (0002-7863) 128
(2006);
3433-3444
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Suicide Inactivation; Diol Dehyrdatase; ab initio
Sažetak
Ab initio molecular orbital calculations have been used to examine the hydrogen-abstraction reactions of diol dehydratase (DDH) in the context of both the catalytic mechanism and the enzyme dysfunction phenomenon termed suicide inactivation. The barriers for the catalytic hydrogen-abstraction reactions of ethane-1, 2-diol and propane-1, 2-diol are examined in isolation, as well as in the presence of various Brø ; ; nsted acids and bases. Modest changes in the magnitudes of the initial and final abstraction barriers are seen, depending on the strength of the acid or base, and on whether these effects are considered individually or together. The most significant changes (ca. 20 kJ mol– 1) are found for the initial abstraction barrier when the spectator OH group is partially deprotonated. Kinetic isotope effects including Eckart tunneling corrections (KIEs) have also been calculated for these model systems. We find that contributions from tunneling are of a similar magnitude to the contributions from semi-classical theory alone, meaning that quantum effects serve to significantly accelerate the rate of hydrogen transfer. The calculated KIEs for the partially deprotonated system are in qualitative agreement with experimentally determined values. In complementary investigations, the ability of DDH to become deactivated by certain substrate analogues is examined. In all cases, the formation of a very stable radical intermediate causes the hydrogen re-abstraction step to become an extremely endothermic process. The consequent inability of 5'-deoxyadenosyl radical (Ado– CH2• ) to be re-generated breaks the catalytic cycle, resulting in the suicide inactivation of DDH.
Izvorni jezik
Engleski
Znanstvena područja
Kemija
POVEZANOST RADA
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
Uključenost u ostale bibliografske baze podataka::
- Chemical Abstracts