Pregled bibliografske jedinice broj: 256788
2-categorical descent, monoidal actions and Hopf algebras
2-categorical descent, monoidal actions and Hopf algebras // New techniques in Hopf algebras and graded ring theory
Bruxelles, Belgija, 2006. (predavanje, nije recenziran, neobjavljeni rad, znanstveni)
CROSBI ID: 256788 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
2-categorical descent, monoidal actions and Hopf algebras
Autori
Škoda, Zoran
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
New techniques in Hopf algebras and graded ring theory
Mjesto i datum
Bruxelles, Belgija, 19.09.2006. - 23.09.2006
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
descent theory; Hopf modules; monoidal categories; distributive laws; equivariant objects; 2-categories
Sažetak
In Tannakian philosophy, roughly speaking, Hopf algebras are interchangeable with their categories of modules. Similarly when globalizing actions of Hopf algebras to nonaffine situations, describing the situation in terms of categorical actions is unavoidable. I will describe several examples where this point of view is very fruitful, leading to appropriate versions of actions on noncommutative projective varieties, including quantum flag variaties, corresponding equivariant sheaves, giving a framework for natural appearance of distributive laws like entwining structures and more general ones. This is also the framework in which some related notions, like lax versions of descent may be treated. Duskin has considered 2-categorical descent in 1980-s. Ordinary descent data in Galois descent along torsors correspond to equivariant sheaves. I developed a 2-categorical analogue of equivariant objects with aim to develop a 2-Galois theory yielding an 2-equivalence between the 2-category of equivariant sheaves on torsor of a categorical group and the 2-category of ordinary sheaves on the base.
Izvorni jezik
Engleski
Znanstvena područja
Matematika