Pregled bibliografske jedinice broj: 255901
Multiparameter Prediction Model for Atrial Fibrillation after CABG
Multiparameter Prediction Model for Atrial Fibrillation after CABG // Computers in Cardiology 2006 / Murray, Alan ; (ur.).
Valencia: Institute of Electrical and Electronics Engineers (IEEE), 2006. str. 489-492 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 255901 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multiparameter Prediction Model for Atrial Fibrillation after CABG
Autori
Sovilj, Siniša ; Rajsman, Gordana ; Magjarević, Ratko ;
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Computers in Cardiology 2006
/ Murray, Alan ; - Valencia : Institute of Electrical and Electronics Engineers (IEEE), 2006, 489-492
Skup
Computers in Cardiology 2006
Mjesto i datum
Valencia, Španjolska, 17.09.2006. - 20.09.2006
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
atrial fibrillation; CABG; wavelet transformation; p wave; classification tree; prediction model
Sažetak
The aim of the study was to develop a multiparameter prediction model of Atrial Fibrillation (AF) after Coronary Artery Bypass Grafting (CABG) based on measured P wave parameters. We recorded the standard II lead ECG for at least 48 hours after surgery in 48 patients. In contrast to previous research and in order to enable the analysis of more data we decided to record the ECG continuously. The ECGs were processed offline and a vector of 82 P-wave parameters was calculated for every hour of the record. The segmentation of the ECGs was based on wavelet QRS and P-wave detectors. The calculated P-wave parameters were used for building classification and regression trees. We built several decision trees (models) for discriminating the AF prone patients after CABG. With the best tree model, we were able to achieve specificity (96.55%), sensitivity (54, 54%), positive predictivity (85.71%), negative predictivity (84.84 %), accuracy (85, 00%).
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
036-0362979-1554 - Neinvazivna mjerenja i postupci u biomedicini (Tonković, Stanko, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Klinički bolnički centar Zagreb