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A generalized elastica-type approach to the analysis of
large displacements of spring-strips

F De Bona' and S Zelenika?

! Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica, Universita’ di Udine, Italy
2 Laboratorio di Micromeccanica, Divisione Scientifica, Sincrotrone Trieste, Italy

Abstract: An elastica-type analytical solution to the problem of large deflections of slightly curved
spring-strips, fixed at one end and loaded at the other with couples and with forces of various
directions, is obtained in this work. The main methods of calculation of elliptic integrals are studied,
and the limits of their applicability are established as functions of the required degrees of accuracy

and of the loading conditions of the spring-strips.

The results obtained with the proposed method are then compared to particular cases already
developed in the literature with different approaches. It is shown that in all the cases considered the

method permits accurate results to be obtained.
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NOTATION

a, f global Cartesian coordinates of the points
of the elastic curve of the spring-strip

C? = PAEI)

C constant of integration

e relative error

E Young’s modulus

E(%) = E(k, n/2), E(k,¢;); complete and

incomplete elliptic integral of the second
kind:

/2
Ek) = J J(1 = k*sin® g)dp
0
Ek, ¢) = jwi J(1 =k sin® p) dg
0

I second moment of area of the cross-
section of the spring-strip

k (or k%) parameter of integration of the elliptic
integrals
K(k) = F(k,n/2), F(k,¢;); complete and

incomplete elliptic integral of the first
kind:

/2 d(p
Ko = JO J(1 = &2 sin? p)
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Flg = | 9
QU o (1 —K*sin®p)

L length of the spring-strip

M couple acting at the free end of the spring-
strip

n integer number

P force acting at the free end of the spring-
strip

P critical load

¥ radius of curvature of the spring-strip in
the unloaded condition

R radius of curvature of the spring-strip in
the loaded condition

s length of a section of the spring-strip

X,y Cartesian coordinates of the points of the
elastic curve linked to the inclination of
force P

B slope angle of force P with respect to
axis a

0, slope angle of the elastic curve with
respect to force P

o; (or ¢F) amplitude of the incomplete elliptic

integral

1 INTRODUCTION

Positioning devices that make use of large deflections of
spring-strips (flexural pivots, parallel spring translators,
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etc.) have been widely used in precision mechanics (1-4),
especially in the fields of aerospace products (5), scien-
tific instrumentation (6) and, more recently, integrated
circuit technology (7) and microelectromechanical sys-
tems (MEMs) (8,9). In the most common cases the
mechanical behaviour of these devices can be evaluated
(10, 11) by considering the geometrical non-linearities
of slender cantilever beams loaded at the free end with
torques and with forces of various directions (Fig. 1);
an initial curvature 1/r must also be considered as
the manufacturing process seldom permits a perfectly
straight shape to be obtained. Other second-order effects
such as those induced by the anticlastic curvature and
by the constraint compliance are generally negligible in
the usual cases of slender springs with large height-width
ratios (10, 12) which are fixed at the edges as suggested
in reference (1).

The problem of large deflections of a straight
cantilever beam loaded at the free end with an axial
force is known in literature as the ‘elastica’ (13) and its
solution procedure is given in reference (14). In the
case of cantilever beams loaded with lateral or inclined
forces, different solution procedures can be traced in the
literature (11, 15-21). However, in the latter case the
calculation is simplified to a great extent if the method
proposed in reference (20) is used, since this procedure
again permits the ‘elastica’ approach to be obtained.
The procedure given in reference (20) has been used in
reference (22), where some numerical aspects of the
calculation have been considered, and in reference (23),
where the above analytical procedure is applied to the
case of various equilibrium configurations.

The situation of slightly curved cantilever beams, or
beams loaded with couples, is analysed in references (24)
and in (25) using a rather complicated graphic-analytical
method. On the other hand, in references (26), (27) and
(28) this problem is solved by means of elliptic integrals.
Although correct, these solution procedures are obtained
using an analytical approach different from that of the
‘elastica’. Hence, the aim of this work is to extend the
‘elastica’ method to the case of slightly curved cantilever
beams loaded at the free end with torques and with
variously inclined forces.

From the theoretical point of view, the availability
of a general analytical solution capable of solving all
the above-mentioned load conditions permits an easier
understanding of the influence of the design parameters
on the mechanical behaviour of the spring-strips.
Moreover, this approach is advantageous from the com-
putational viewpoint since, due to the implicit form
of the governing equations and to the presence of
elliptic integrals, the numerical solution must follow an
iterative approach to be carefully tuned in order to
avoid numerical instabilities. Hence, a section of this
paper will be dedicated to a thorough analysis of the
main numerical aspects of the solution, with special
emphasis on the procedure employed for the calculation
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of elliptic integrals. In fact, even if several approximate
solutions are available in the literature, the problem of
their applicability limits in large displacement problems
has never been considered.

2 THEORETICAL FORMULATION

The general case shown in Fig. 1, i.e. that of a cantilever
beam loaded by an inclined force P and a couple M
(positive if it decreases the curvature) at the free end, is
developed in this work. As is done in the ‘elastica’ case,
a curvilinear coordinate system whose orientation is
determined by the inclination of the force is introduced;
the usual hypothesis of a slender and inextensible beam
is adopted in this case too. On the other hand, the
geometry of a variable cross-section is not considered
since it is of little practical interest.

The differential equation of the deflection curve is thus
given by

(d& 1)
My=M-—Py=Ell ——— (1)
ds r
where the exact expression for the curvature is used.

It must be observed that, according to the original
formulation (14) and to the initial hypothesis of a
slender rod, in this expression the influence of the trans-
verse shear deformation is not taken into account; in
the case of stubby beams this simplification does not

Fig. 1 Undeflected (----- ) and deflected (——) shapes
of a curved cantilever beam loaded with a torque
and an inclined end load
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hold any more and therefore the approach suggested by
reference (12) must be followed.

Due to the torque M and to the initial curvature 1/r,
the problem considered in this work is not symmetric
and therefore the direction of force P has a physical
meaning. [t must in fact be observed that, as the orien-
tation of the coordinate system is determined by the
inclination of the load, a change of the force’s direction
(not its sign) will also imply a change of the value of the
slope angle to its complement.

Thus, deriving expression (1) with respect to s and
bearing in mind that dy/ds =sin 6,

4’6 = -(C?sin 6 (2)
i sin

Hence, multiplying equation (2) by d6/ds and integrating,
the following relation is obtained:

1 /doN? ,
2\gs =C*cos 8+ C (3)

The constant of integration C; is found by applying
expressions (1) and (3) to the free end of the spring-
strip so that equation (3) becomes

i % 2_c2 0 6 l %_{_l ’ (4
N/ = (cos 6 — cos 0)~|—2 I )

Thus, separating the variables, taking the appropriate
sign and integrating between 0 and s:

__J% £ 5
°= n J2 C(cos 6 — cos a) )

in which
P 1 /M 1\ )
cos a = cos f, Y E1+r (6)

The usual substitutions of the ‘elastica’ method are
now introduced:

L= si a ) _sin(G/Z) 7
= sin 5 ) sin @ = A (7)
Hence

Cs = F(k, po) — F(k, p4) (8)

If the loading conditions and the mechanical charac-
teristics of the spring-strip are known, the parameter C
can easily be determined, but the values of s, &, ¢, and
@ are still unknown. Equation (8) has thus to be applied
at the fixed end of the strip (point B in Fig. 1) and the
following expression is obtained:

CL = F(k, 9o) — F(k, ¢3) (9)

Variables k, ¢, and ¢y are all functions of the angle 0,
which is therefore the only unknown of the problem.
Nevertheless, the presence of elliptic integrals makes the
problem transcendental so that its solution requires an
lterative procedure.
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It must also be observed that, similar to what was
done in the case of cantilever beams subjected only to
inclined end loads in reference (23), the utilization of
expressions (8) and (9) allows different equilibrium con-
figurations of the spring-strips to be determined also in
the more general case of Fig. 1. This can be achieved
simply by adding or subtracting multiples of = from the
integration limits of the integrating function:

Cs = F(k, + 9o+ nm) — F(k, 94 + nn) (10)
CL = F(k, ¢, £ nt) — F(k, g+ nn) (11)

Since dy/ds=sin6 and dx/ds=cosf, it is now
possible to obtain the expressions suitable for the calcu-
lation of the x and y coordinates of the elastic curve of
the strip:

X_A_ E(k’ (ﬂo)‘“E(k, (pA)‘l

= 12
s = TFUe po) — Flk.py) .
b k — E(k
*Y“[E:ZE( s 90) ( ~WB)A (13)
L F(k, 9o) — F(k, py)
Ya _ 2k(cos @, — COS @) (14)
A} F(ks (pO)‘F(k’ QA)
JB 2k(cos gg — cos ¢;) (15)

L~ F(k, po) — Flk, 95)

It can be observed that these expressions are formally
equal to those of ‘elastica’; in that case, however, cos «
was equal to cos 6, so that the values of k could have
only been less than or equal to | [see equations (6) and
(7)]. In the general case considered in this work the
absolute value of the right-hand side of equation (6) is
greater than 1 if

L M 12>1 0 16
22 El+r =14cosb, (16)

In this case k must be obtained directly. In fact, with
simple trigonometric substitutions from equations (6)
and (7) it 1s possible to obtain

2

—_ 2 e
P \/{1 cos Oy + [ 2CHYM/ET+ 1/r) } a7

From equation (17) it follows that 4 is always real, but it
is greater than 1 if condition (16) holds true. In this case,
as the elliptic integrals are defined only for values of k&
smaller than 1, it is necessary to use the approach sug-
gested in reference (26) and the following substitutions
have to be introduced:

1

k*:;, k sin ¢ = sin p* (18)

The new expressions of equations (8), (9), (12), (13),
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(14) and (15) can be easily obtained, remembering that

*2

1

F(k*, pf) (19)

F(k, ¢;) = k* F(K*, ¢f") (20)

From simple trigonometric arrangements it iS now
finally possible to obtain the a and [ coordinates of
point A of the elastic curve of the spring-strip:

s [ x
%zzﬂcosﬁ—i—}—gsinﬂ—z<fcos[)’+%sinﬁ>
(21)
X
%:—fsinﬂnt%cosﬂ
s [x
4o <—”‘ sin 8 — 22 cos ﬂ> (22)
L\ s s

3 NUMERICAL CALCULATION

When the loading conditions of the spring-strips are
known, an iterative procedure with successive approxi-
mations must be used to calculate from expression (9)
the value of 0, and hence to determine the coordinates
of the spring-strip free end in the deflected position
(Fig. 2); the convergence of the procedure can be
speeded up as suggested in reference (29). Expression
(8) is then used for the calculation of the elastic line.
However, in this case the variable of integration must
be ¢, and not 6,, since numerical instabilities can occur
when k 2 sin 0,/2 [see equation (7)]. Subsequently 0, is
determined so that, with 6, known, it is possible to calcu-
late, using expressions (12), (13), (14), (15), (21) and
(22), the x, y, a and f coordinates of the elastic curve.

The iterative procedure makes it necessary to calculate
repetitively the eiliptic integrals of the first kind which
appear in expressions (8) and (9). It is thus particularly
suitable to use approximate expressions for the calcu-
lation of these integrals.

It is known (30) that only in cases when k=0, k=1
or ¢;=0 are the values of the elliptic integrals easily
established. In the general case, various approaches
are suggested in the literature, which make use of inter-
polating procedures or other approximate solutions for
the calculation of elliptic integrals. An accurate analysis
of the error induced by these methods has been per-
formed by comparing the results obtained with the
methods suggested in the literature (22, 30-32) with those
achieved using a numerical method of integration (33).

The calculation of complete elliptic integrals of the
first kind is necessary in the iterative procedure when
p; =m/2. In this case three approximate solutions are
generally employed: the method of the hypergeometric
function, the method of polynomial approximations and
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the method of the arithmetic—geometric mean. It has
been verified that the method of the hypergeometric
function (also called infinite series method) (30, 32)
introduces an unbounded error when k approaches 1, so
that in this particular case an adequate number of series
elements has to be accounted for. The method of poly-
nomial approximations (30) produces a very small but
still appreciable error. Only the arithmetic—geometric
mean method (22, 30, 31) permits exact values of the
complete elliptic integrals of the first kind to be obtained
in the whole interval of integration and therefore it has
to be preferred to the other approximate solutions.

In the general case, in the iterative procedure it is
necessary to calculate the incomplete elliptic integrals of
the first kind. In this case the trigonometric series
method (32) introduces an error which can be up to 35
per cent for k approaching | and ¢; approaching n/2. In
the same interval of integration the descending Landen
transformation method (30) introduces an error of 5 per
cent (see Fig. 3a). The arithmetic—geometric mean
method (22, 30, 31) introduces an error up to 20 per cent
in the proximity of k =1 and ¢; = n/2 (see Fig. 4). Only
the ascending Landen transformation method permits
the exact values of the incomplete elliptic integrals of the
first kind to be obtained, as for all values of k and ¢, an
error lower than 1 x 107! per cent is met.

The aim of optimizing the iterative procedure is thus
achieved when the arithmetic—geometric mean method
is used for the calculation of the complete elliptic
integrals of the first kind and the ascending Landen
transformation method for the calculation of the incom-
plete elliptic integrals of the first kind (see the Appendix).

Concerning the complete elliptic integrals of the
second kind, in this case the arithmetic—geometric mean
method also permits an exact calculation. In the case of
incomplete elliptic integrals of the second kind it has
been verified that none of the methods suggested in the
literature guarantees exact results in the whole interval
of integration to be obtained. In fact, similar to the case
of the incomplete integrals of the first kind, the trigono-
metric series method (32) introduces an error that can
reach 35 per cent. The descending Landen transform-
ation method requires the calculation of F(k, ¢;) (30).
This can be performed using the ascending Landen
transformation method, but in this case (see Fig. 3b) a
significant error is introduced for k close to 1 and ¢;
close to m/2. Figure 5 shows the error induced by the
arithmetic-geometric mean method. In case (a) the
evaluation of F(k, ¢;) required by the method was
done using the arithmetic—geometric mean, while in case
{b) the ascending Landen transformation method was
applied; in both cases K(k) and E(k) were evaluated
using the arithmetic-geometric mean method. From
these results it is obvious that a numerical method of
integration has to be used; however, this fact does not
affect significantly the calculation since the elliptic
integrals of the second kind have to be computed only
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Discretization of the
beam in m sections

JFBMELLr/

Go=m— /3
(——>( k, (o, s > Equations (6, 7) |
Go= B0+ ABo l
- method of (p‘.i——n(;t :[: i
successive -
approximations n=0, 1/211' 32,....

Evaluation of the elliptic
integrals of the first kind
K(k) -> arithmetic-geometric mean
F(k, i) - Landen's ascending transf.
F(k, @) = 2nK (k) £ F(k, @)
+ special cases (k=0,k=1, @i=0)

T - (F(k, @o) - F(k, @)} <

Evaluation of the elliptic
integrals of the second kind
E(k) - arithmetic-geometric mean
E(k, i) - numerical integration
E(k, @) = 2nE(k) £ E(k, @9)

+ special cases (k=0,k=1, ¢i=0)

Evaluation of the coordinates
of the free end of the beam
Xo, yo, fo, ao >
Equations (13, 15, 19, 20)

As =Lim

[ @a = arcsin {sin (Bo/2) / k), s = OJ
55

Pa = Pa+ AQa
@i=nnt @i
~>metho‘dof__ﬂ N P
successive AN
approximations n=0,1/2,1,3/2, ...

!

Evaluation of the elliptic
integrals of the first kind
K(k) - arithmetic-geometric mean
F(k, ¢i) - Landen's ascending transf.
F(k, @) = 2nK(k) £ F(k, @)
+ special cases (k=0,k=1, i =0)

Cs - (F(k, Qo) - F(k, pa)} S

Evaluation of the elliptic
integrals of the second kind
E(k) - arithmetic-geometric mean
E(k, @i) > numerical integration
E(k, @) = 2nE(k) £ E(k, @)
+special cases (k =0, k=1, ¢i=0)

!

XA, )’A,fA, aa >
Equations (12, 14, 19, 20)
I

End

Fig. 2 Numerical calculation procedure scheme

when the convergence of the iteration has been reached
(see Fig. 2).

4 EXAMPLES

The method developed here has been compared with
some significant cases extracted from the literature which
adopt different solution strategies.

4.1 Straight cantilever beam with lateral loads

The case of straight beams loaded with lateral loads was
developed in references (15) and (16) and was enhanced
from the computational point of view by Mattiasson
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(22) with the aim of providing a reference for the vali-
dation of finite element method (FEM) models.
This simple case aims at illustrating the sensitivity of
the solution to errors in the evaluation of the elliptic
integrals. Figure 6 shows the elastic line evaluated with
the method proposed in this work, as well as that
evaluated with the procedure suggested in reference (22),
for different values of the lateral load. The marked differ-
ence between the two methods can be easily explained
considering that in reference (22) the arithmetic—
geometric mean method 1s suggested for the calculation
of the incomplete elliptic integrals. As pointed out
previously, the arithmetic—geometric mean method
introduces a significant error in the calculation of the
incomplete integrals (refer to Fig. 4); for small loads this
fact causes an error in the determination of the elastic
curve at the free end of the beam (Fig. 6). On the other

Proc Instn Mech Engrs Vol 211 Part C



514 F De BONA AND S ZELENIKA

Fig. 3 Error introduced by the descending Landen
transformation method in the calculation of the
incomplete integral of (a) the first and (b) the
second kinds

Fig. 4 Error introduced by the arithmetic—geometric
mean method in the calculation of the incom-
plete elliptic integrals of the first kind

hand, for larger loads the maximum error occurs close
to the fixed end of the beam. This behaviour is easily
explainable if the graph of the integrating function Cs
is considered. Figure 7 shows the integrating function Cs
versus the iteration angle ¢, (see Fig. 2) evaluated with
the procedure herein proposed and with that proposed
in reference (22); the case of a high load [(CL)*=10] is
considered. Particularly evident is the fact that, especi-
ally for values of ¢, approaching m/2 (in the proximity
of the free end of the beam), the error in the calculation
of Cs causes an appreciable increase of the slope of the

Proc Instn Mech Engrs Vol 211 Part C

Fig. 5 Error introduced by the arithmetic-geometric
mean method in the calculation of E(k, ¢;) if
F(k, ;) is evaluated (a) with the arithmetic—
geometric mean method and (b) with the
Landen ascending transformation method

| (CL)?=0.2
I (CL)?=1
08 /| (CLy2=2
(CL)2=4
0.6
a
L\~ =
04 (CL)2=10
0.2 this work
————method proposed
in (22)

0 02 04 f06 08 1

L

Fig. 6 Straight cantilever beam with an axial end load

curve that can give rise to problems in the convergence
of the iterative procedure.

This example proves clearly that, especially when a
high degree of accuracy has to be achieved, an error
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this work )
——— method proposed in (22
s I~ (CL)2:10
2 N
AN
Cs \\
0
|
\
\
) AN
\\/\
-4
T T " 3rn
hid - Pa A
4 rad 4

Fig.7 Graphic representation of the integrating
function Cs

sensitivity test has to be performed. at least in some
cases.

4.2 Curved cantilever beam with axial loads

The case of initially curved beams loaded by concen-
trated forces at the edges is considered in references (25),
(27) and (28). In reference (25) the assumption that the
elastic line can be approximated by a number of circular
arcs tangent to each other at the point of intersection is
made; consequently a numerical solution based on a dis-
crete model of the beam is proposed. This approach is
not analytical and therefore is of little interest nowadays
when a more general case can be considered simply by
adopting a FEM model.

An analytical solution of the problem is suggested
in references (27) and (28), but in these works an
elliptical-type approach different from that of ‘elastica’
is followed.

Figure 8 shows the elastic lines obtained with the
procedure described in this work in the case of a spring-
strip loaded by a concentrated end load and with differ-
ent initial curvatures. The values of the parameters are
chosen according to the numerical example developed in
reference (27) where the absolute displacement of the
free end was given for values of A = L/r varying from 0°
to 80°. The results obtained in this work are in close
agreement with those given in reference (27). Moreover,
in this work the complete elastic line is evaluated for
five cases (15°, 30°, 45°, 60°, 70°) in the same range of
angular values.
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P
1 - A=15°

Fig.8 Curved cantilever beam with an axial end load

4.3 Other cases

The problem of curved flat springs forced to bend in
the direction opposite to the initial curvature and then
put between two fixed supports has been proposed in
reference (24). In that work it was shown that various
possible shapes of the buckled spring must have at least
one point of inflection and therefore, with the aid of
some graphical considerations, the problem was inter-
preted as that of two or more straight beams fixed at
one end and having an inclined load at the free end. An
elliptical-type solution was thus obtained and the coordi-
nates of the free edge and of the inflection point were
calculated for two different equilibrium configurations.

By simply using n =2 in equations (10) and (11) the
same problem can be easily solved following the elastica-
type approach suggested in this work. Figure 9 shows
the complete elastic line for a selection of increasing
loads; the values of the beam geometric parameters
are chosen according to the numerical case proposed in
reference (24). However, in that case only the ‘direct’
problem was solved as the axial loads were obtained by
imposing the values of 6,, whereas, obviously, in this
case the ‘inverse’ problem is considered.

Other special cases were also tested, as that of the
pinned-fixed square diamond frame described in refer-
ence (34) and that of the square frame loaded at the
mid-points by a pair of forces applied at opposite sides
(35). The equilibrium configurations of cantilever beams
loaded by an axial force recently obtained by Navee and
Elling (23) were also checked. In all these cases the
results of this work were in perfect agreement with
those obtained in the literature, therefore confirming the
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T

0.8

0.6+

a
L
04

02_/\

0
-04

T

Fig.9 Curved beam with an axial load (second
equilibrium configuration)

large versatility of the proposed generalized elastica-type
approach.

5 CONCLUSIONS

In this work the elliptical solution originally developed
to study large displacements of straight beams deflected
by axial end loads (12), and then applied to the case of
inclined end loads (20), has been extended to the more
general case of curved beams loaded at the free end
with couples and with inclined loads. The governing
equations obtained have an implicit form and therefore
an iterative approach has to be followed. With the
example of a cantilever beam loaded by a lateral load it
has been shown that in some cases the solution is very
sensitive even to small errors in the calculation of elliptic
integrals; therefore a careful analysis of the error intro-
duced by the approximated methods proposed in the
literature has been performed and the most suitable
methods have been detected. The results obtained are
useful not only in large displacement problems but also
in those mechanical problems in which the solution is
expressed in terms of elliptic integrals [e.g. the Hertzian
contact problem (36)].
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APPENDIX
Calculation of the complete elliptic integrals using the
arithmetic—geometric mean method
The arithmetic-geometric mean scheme is
a,=1
ay = é(ao + by)
ay=13(a, +by) (23)

1
‘INZE(C’N—L +by_1)
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bo= /(1 —K2)
by = (aobo)l/2
b, =(ayby)'? (24)

by = (aN—1bN—1)U2

co=k
1= %(ao_ bo)
¢y =3(a,—by) (25)

1
ey =7ay —by_y)

The process is repeated until ay = by, 1.e. ¢y 0. Then

JT
Kiky=>~ (26)

K(k)

E(k) = K(k) — == (c + 2} + 223+ - +2V¢}

(27)

Calculation of the incomplete elliptic integrals of the first
kind using the ascending Landen transformations

In this case a recurrence formula is used:

l - a, 1 Ay 1y .
+ sin ? + coS ;“2 =
< Ay o+
>
) sin @,

(¢11+1 <(0n) (29)

and the expression for the calculation of the incomplete
elliptic integral of the first kind is given by

1 = Lo\

1 AL 30

8%

> (28)

o
Sk

SE

Sin(z(ﬂn+l - (pn) = Sin<
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