Pregled bibliografske jedinice broj: 242906
On the Global and Cubic Convergence of a Quasi-Cyclic Jacobi Method
On the Global and Cubic Convergence of a Quasi-Cyclic Jacobi Method // Numerische Mathematik, 66 (1993), 97-122 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 242906 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the Global and Cubic Convergence of a Quasi-Cyclic Jacobi Method
Autori
Rhee, H., Noah ; Hari, Vjeran
Izvornik
Numerische Mathematik (0029-599X) 66
(1993);
97-122
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Symmetric matrix; quasi-cyclic Jacobi method; cubic convergence
Sažetak
In this paper we consider the global and the cubic convergence of a quasi-cyclic Jacobi method for the symmetric eigenvalue problem. The method belongs to a class of quasi-cyclic methods recently proposed by W. Mascarenhas. Mascarenhas showed that the methods from his class asymptotically converge cubically per quasi-sweep (one quasi-sweep is equivalent to 1.25 cyclic sweeps) provided the eigenvalues are simple . Here we prove the global convergence of our method and derive very sharp asymptotic convergence bounds in the general case of multiple eigenvalues. We discuss the ultimate cubic convergence of the method and present several numerical examples which well comply with the theory.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Vjeran Hari
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- SCI-EXP, SSCI i/ili A&HCI
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews