Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 233863

Analysis of Minkowski contents of fractal sets and applications


Žubrinić, Darko
Analysis of Minkowski contents of fractal sets and applications // Real Analysis Exchange, Vol 31 (2006), 2; 315-354 (podatak o recenziji nije dostupan, članak, znanstveni)


CROSBI ID: 233863 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Analysis of Minkowski contents of fractal sets and applications

Autori
Žubrinić, Darko

Izvornik
Real Analysis Exchange (0147-1937) Vol 31 (2006), 2; 315-354

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Fractal set; Minkowski content; box dimension; gauge function; swarming function; Lebesgue integral; singular integral

Sažetak
Using fractal sets and Minkowski contents we extend the repertoire of Lebesgue integrable functions to those with large singular sets. A new method of constructing fractal sets is proposed, using a class of absolutely continuous functions, called swarming functions. We obtain bounds on Minkowski contents of fractals in terms of two natural parameters contained in $[-\infty, \infty]$, called the upper and lower dispersions of the fractal. Assuming that upper and lower box dimensions of a fractal are equal, we show that if the difference of dispersions is sufficiently large then the set is not Minkowski measurable. Fractals with nondegenerate $d$-dimensional Minkowski contents (i.e., contained in $(0, \infty)$) are characterized as those with nondegenerate dispersions (i.e., contained in $(-\infty, \infty)$). The Weierstrass function, a class of affine fractal functions and a class of McMullen's sets have nondegenerate Minkowski contents. Also some classes of spirals of focus and limit cycle type in the plane are shown to be Minkowski measurable. Using swarming functions we can easily construct fractal sets with maximally separated lower and upper box dimensions, and a pair of fractal sets with maximal instability of lower box dimension with respect to union. We also study gauge functions associated with fractals having degenerate Minkowski contents, and obtain new integrability criteria for a class of singular integrals.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
0036031

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Darko Žubrinić (autor)


Citiraj ovu publikaciju:

Žubrinić, Darko
Analysis of Minkowski contents of fractal sets and applications // Real Analysis Exchange, Vol 31 (2006), 2; 315-354 (podatak o recenziji nije dostupan, članak, znanstveni)
Žubrinić, D. (2006) Analysis of Minkowski contents of fractal sets and applications. Real Analysis Exchange, Vol 31 (2), 315-354.
@article{article, author = {\v{Z}ubrini\'{c}, Darko}, year = {2006}, pages = {315-354}, keywords = {Fractal set, Minkowski content, box dimension, gauge function, swarming function, Lebesgue integral, singular integral}, journal = {Real Analysis Exchange}, volume = {Vol 31}, number = {2}, issn = {0147-1937}, title = {Analysis of Minkowski contents of fractal sets and applications}, keyword = {Fractal set, Minkowski content, box dimension, gauge function, swarming function, Lebesgue integral, singular integral} }
@article{article, author = {\v{Z}ubrini\'{c}, Darko}, year = {2006}, pages = {315-354}, keywords = {Fractal set, Minkowski content, box dimension, gauge function, swarming function, Lebesgue integral, singular integral}, journal = {Real Analysis Exchange}, volume = {Vol 31}, number = {2}, issn = {0147-1937}, title = {Analysis of Minkowski contents of fractal sets and applications}, keyword = {Fractal set, Minkowski content, box dimension, gauge function, swarming function, Lebesgue integral, singular integral} }

Uključenost u ostale bibliografske baze podataka::


  • Mathematical Reviews





Contrast
Increase Font
Decrease Font
Dyslexic Font