Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 20623

A problem of Diophantus and Dickson's conjecture


Dujella, Andrej
A problem of Diophantus and Dickson's conjecture // Number theory : diophantine, computational, and algebraic aspects : proceedings of the international conference / Gyoery, Kalmaln ; Pethoe, Attila ; Sos, Vera T (ur.).
Berlin : New York: Walter de Gruyter, 1998. str. 147-156 (poster, nije recenziran, sažetak, znanstveni)


CROSBI ID: 20623 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A problem of Diophantus and Dickson's conjecture

Autori
Dujella, Andrej

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Number theory : diophantine, computational, and algebraic aspects : proceedings of the international conference / Gyoery, Kalmaln ; Pethoe, Attila ; Sos, Vera T - Berlin : New York : Walter de Gruyter, 1998, 147-156

ISBN
311-0153-64-5

Skup
International conference Number theory : diophantine, computational, and algebraic aspects

Mjesto i datum
Eger, Mađarska, 29.07.1996. - 02.08.1996

Vrsta sudjelovanja
Poster

Vrsta recenzije
Nije recenziran

Ključne riječi
Diophantine quadruples; primes in arithmetic progressions

Sažetak
A Diophantine m-tuple with the property D(n), where n is an integer, is defined as a set of m positive integers with the property that the product of its any two distinct elements increased by n is a perfect square. It is known that if n is of the form 4k + 2, then there does not exist a Diophantine quadruple with the property D(n). The author has formerly proved that if n is not of the form 4k + 2 and n is not in {;-15, -12, -7, -4, -3, -1, 3, 5, 7, 8, 12, 13, 15, 20, 21, 24, 28, 32, 48, 60, 84}; ; , then there exist at least two distinct Diophantine quadruples with the property D(n). The main problem of this paper is to consider the set U of all integers n, not of the form 4k + 2, such that there exist at most two distinct Diophantine quadruples with the property D(n). One open question is whether the set U is finite or not. It can be proved that if n in U and |n| > 48, then n can be represented in one of the following forms: 4k + 3, 16k + 12, 8k + 5, 32k + 20. The main results of the this paper are: If n in U \ {;-9, -1, 3, 7, 11}; ; and n = 3 (mod 4), then the integers |n - 1|/2, |n - 9|/2 and |9n - 1|/2 are primes, and either |n| is prime or n is the product of twin primes. If n in U \ {;-27, -3, 5, 13, 21, 45}; and n = 5 (mod 8), then the integers |n|, |n - 1|/4, |n - 9|/4 and |9n - 1|/4 are primes.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
037009

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Andrej Dujella (autor)


Citiraj ovu publikaciju:

Dujella, Andrej
A problem of Diophantus and Dickson's conjecture // Number theory : diophantine, computational, and algebraic aspects : proceedings of the international conference / Gyoery, Kalmaln ; Pethoe, Attila ; Sos, Vera T (ur.).
Berlin : New York: Walter de Gruyter, 1998. str. 147-156 (poster, nije recenziran, sažetak, znanstveni)
Dujella, A. (1998) A problem of Diophantus and Dickson's conjecture. U: Gyoery, K., Pethoe, A. & Sos, V. (ur.)Number theory : diophantine, computational, and algebraic aspects : proceedings of the international conference.
@article{article, author = {Dujella, Andrej}, year = {1998}, pages = {147-156}, keywords = {Diophantine quadruples, primes in arithmetic progressions}, isbn = {311-0153-64-5}, title = {A problem of Diophantus and Dickson's conjecture}, keyword = {Diophantine quadruples, primes in arithmetic progressions}, publisher = {Walter de Gruyter}, publisherplace = {Eger, Ma\djarska} }
@article{article, author = {Dujella, Andrej}, year = {1998}, pages = {147-156}, keywords = {Diophantine quadruples, primes in arithmetic progressions}, isbn = {311-0153-64-5}, title = {A problem of Diophantus and Dickson's conjecture}, keyword = {Diophantine quadruples, primes in arithmetic progressions}, publisher = {Walter de Gruyter}, publisherplace = {Eger, Ma\djarska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font