Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 205216

Comparison of Retention Modelling in Ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks


Bolanča, Tomislav; Cerjan-Stefanović, Štefica; Srečnik, Goran; Debeljak, Željko; Novič, Milko
Comparison of Retention Modelling in Ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks // Separation science and technology, 40 (2005), 6; 1333-1352 doi:10.1081/SS-200052816 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 205216 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Comparison of Retention Modelling in Ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks

Autori
Bolanča, Tomislav ; Cerjan-Stefanović, Štefica ; Srečnik, Goran ; Debeljak, Željko ; Novič, Milko

Izvornik
Separation science and technology (0149-6395) 40 (2005), 6; 1333-1352

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
ion chromatography; retention modeling; multiple linear regression; artificial neural networks

Sažetak
The aim of this work is comparison of prediction power of multiple linear regression and artificial neural networks retention models for inorganic anions (fluoride, chloride, nitrite, sulphate, bromide, nitrate, and phosphate) in suppressed ion chromatography with isocratic elution. Relations between ion chromatographic parameters (eluent flow rate and concentration of OH- in eluent) and retention time of particular anion are described with unique mathematical function obtained by multiple linear regression and with three layers feed forward artificial neural network. The artificial neural network was trained with a Levenberg - Marquardt batch error back propagation algorithm. It is shown that multiple linear regression retention model has lower but still very satisfactory predictive ability. Due to its complexity, artificial neural networks must still be regarded as a more complicated technique. That indicates multiple linear regression as a method of choice for retention modeling in the case of ion chromatographic analysis with isocratic elution.

Izvorni jezik
Engleski

Znanstvena područja
Kemija



POVEZANOST RADA


Projekti:
0125016

Ustanove:
PLIVA HRVATSKA d.o.o.

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Bolanča, Tomislav; Cerjan-Stefanović, Štefica; Srečnik, Goran; Debeljak, Željko; Novič, Milko
Comparison of Retention Modelling in Ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks // Separation science and technology, 40 (2005), 6; 1333-1352 doi:10.1081/SS-200052816 (međunarodna recenzija, članak, znanstveni)
Bolanča, T., Cerjan-Stefanović, Š., Srečnik, G., Debeljak, Ž. & Novič, M. (2005) Comparison of Retention Modelling in Ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks. Separation science and technology, 40 (6), 1333-1352 doi:10.1081/SS-200052816.
@article{article, author = {Bolan\v{c}a, Tomislav and Cerjan-Stefanovi\'{c}, \v{S}tefica and Sre\v{c}nik, Goran and Debeljak, \v{Z}eljko and Novi\v{c}, Milko}, year = {2005}, pages = {1333-1352}, DOI = {10.1081/SS-200052816}, keywords = {ion chromatography, retention modeling, multiple linear regression, artificial neural networks}, journal = {Separation science and technology}, doi = {10.1081/SS-200052816}, volume = {40}, number = {6}, issn = {0149-6395}, title = {Comparison of Retention Modelling in Ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks}, keyword = {ion chromatography, retention modeling, multiple linear regression, artificial neural networks} }
@article{article, author = {Bolan\v{c}a, Tomislav and Cerjan-Stefanovi\'{c}, \v{S}tefica and Sre\v{c}nik, Goran and Debeljak, \v{Z}eljko and Novi\v{c}, Milko}, year = {2005}, pages = {1333-1352}, DOI = {10.1081/SS-200052816}, keywords = {ion chromatography, retention modeling, multiple linear regression, artificial neural networks}, journal = {Separation science and technology}, doi = {10.1081/SS-200052816}, volume = {40}, number = {6}, issn = {0149-6395}, title = {Comparison of Retention Modelling in Ion Chromatography by Using Multiple Linear Regression and Artificial Neural Networks}, keyword = {ion chromatography, retention modeling, multiple linear regression, artificial neural networks} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font