Pregled bibliografske jedinice broj: 202695
The Butterfly Theorems in the Hyperbolic Plane
The Butterfly Theorems in the Hyperbolic Plane // Abstracts
Budimpešta: Szent Istvan University Ybl Miklos Faculty of Building Sciences, 2005. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 202695 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The Butterfly Theorems in the Hyperbolic Plane
(The Butterfly Theorems in the Hyperbolic plane)
Autori
Jurkin, Ema
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Abstracts
/ - Budimpešta : Szent Istvan University Ybl Miklos Faculty of Building Sciences, 2005
Skup
Konstruktive Geometrie
Mjesto i datum
Balatonföldvár, Mađarska, 05.09.2005. - 09.09.2005
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Leptirov teorem; hiperbolička ravnina
(Butterfly Theorem; Hyperbolic plane)
Sažetak
There are many varieties of Butterfly Theorem in the Euclidean plane. Here some analogous theorems in the hyperbolic plane are proved. It is shown that proofs do not depend on the class of circle into which complete quadrangle is inscribed. The only difference is between the case when qadrangle is inscribed into absolute conic and the case when it is inscribed into one of three classes of circles. The construction of the points with butterfly property is given. It is proved that with any quadrangle an infinite number of butterfly points is associated which are located on a second order curve.
Izvorni jezik
Engleski
Znanstvena područja
Matematika