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Abstract—In order to achieve full and viable autonomy of an 
underwater vehicle, it is of high importance that the vehicle 
can operate in at least a foreseeable, if not an unhindered 
way, under conditions of a technical failure or breakdown. 
Thus, a technique for dealing with a broad range of possible 
faults and failures is needed. Every such technique can be 
methodologically separated into a sub-technique for fault 
detection and an adaptive mechanism on the control law or 
behavior. This paper concerns itself with the problem area 
of fault detection and localization. It describes the 
mathematical method of Principal Component Analysis and 
provides guidelines for its use on fault detection and 
localization. The benchmark example used herein is a DC 
motor as a simplified model of a propulsion subsystem of an 
AUV. The particular algorithm in the PCA class that will be 
elaborated upon in this paper is the Partial Principal 
Component Analysis. The paper gives results of simulation 
in Simulink, comments on the successes and shortcomings of 
the method, and contains proposals for future research.  

I. 

II. 

A. 

INTRODUCTION 
The subject of the paper is fault detection and 

localization in an underwater vehicle propulsion system. 
Fault detection and localization is one of the two principal 
parts of a system that enables fault tolerant operation of an 
automated system. The other part is a hybrid or 
deliberative policy or an adaptation mechanism that 
changes the control law for a particular failure occurrence. 
This area of research is of critical importance in the 
control engineering of underwater vehicles, especially of 
the semi- or fully autonomous regime. An autonomous 
underwater vehicle operates fully immersed in an isolated 
environment. This environment is ripe with physical 
effects and challenging impositions to control law 
synthesis that are to the most part counterintuitive and 
outside of standard experience of the human crew aboard 
the base vessel. The environment is relatively poorly 
explored, human presence is minimal, and cost-per-
mission of any human endeavor within it is prohibitive. 
Furthermore, the physical properties of the permeating 
medium are such that both sensing and communication 
with the base vessel is difficult and mounts its own set of 
problems. Therefore, the ability of any human-originated 
instrument, such as an AUV, to continue to operate in 
spite of technical faults is paramount. This is achieved by 
robustly and correctly implementing a fault tolerant 
control mechanism. The actuators of the AUV must be 
guided to the greatest possible efficiency and a mission 
profiler must be aware of the occurrence of a fault in order 

to make a decision to return to base or position itself in a 
location, orientation or position which minimizes the cost 
of the reclamation and salvage mission. All of this 
depends critically on the correctness and speed of the 
failure detection and localization. This paper will present 
one of the techniques for achieving a robust, trustworthy 
detection of a technical fault on the actuator subsystem of 
an AUV, the Principal Component Analysis approach. In 
section II, it will give explanation and mathematical 
foundation for the fault detection and localization 
algorithm, as well as lay out anticipated modifications that 
open up a plethora of additional possibilities of this 
approach. In section III, the algorithm laid out in section II 
will be tested and the trustworthiness and speed of fault 
detection and localization determined. Parameters leftover 
from the synthesis in section II to be determined 
empirically and boundary conditions will be looked into 
and robust values assigned. For the purposes of 
experimental verification of the results of synthesis in 
section II, the propulsion system will be described as a 
simple linear, time-invariant DC motor. 

SYNTHESIS OF THE FAULT DETECTION AND 
LOCALIZATION ALGORITHM 

Principal Component Analysis 
Principal component analysis (PCA) is a linear method 

which transforms a multidimensional space to a space 
with fewer dimensions. This is due to the fact that the 
greater the correlation between the data, the greater their 
redundancy. If that is the case, the data can be compressed 
in a set of fewer dimensions. Here, compressed assumes 
that a proper qualitative understanding of the system’s 
characteristics is maintained while the number of 
dimensions decreases. Since the number of dimensions is 
a strong measure of how much computing power is 
needed aboard an AUV, this is an alluring possibility. 
Computing power translates either into the power rating of 
the onboard electronics, and thus indirectly into the rating, 
weight and capacity of the batteries, or the time necessary 
to perform calculations, which destabilizes and places 
constraints on the control law. Both of these 
manifestations of the necessity for higher computing 
power impinge upon the autonomy and base-craft 
independence which are defining qualities of any viable 
AUV. 

The main objective of the PCA is to define a subspace 
of the problem space such that a mapping of all vectors to 
the subspace maintains a high level of problem-relevant 
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where [ ]1 2 l=T t t t  and [ ]1 2 l= p pP p  
represent principal components, and 

1 2l l m+ + =  t tT t  and [ ]1 2l l+ +=P mp p p  

represent the space of noise (residual). With this 
procedure, the space dimension is reduced from m to l 
and a statistical model of the process is created. 

information. For the problem of fault detection, problem-
relevant information is any such that contributes to the 
ability of the on-board software to detect and localize an 
occurrence of a technical failure. This subspace is defined 
by l orthogonal vectors in the problem space, where l is 
any number smaller than the dimension of the problem 
space. The constraint on the smallness of l is the necessity 
of information conservation. In mathematical terms, the 
subspace, i.e. the linear combination of l orthogonal 
vectors, must have the greatest possible variance. 

 

Hotelling’s T2 Statistics B. 
Let X be a matrix of measured data in the form of  
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where m is the number of observed variables and n the 
number of time samples. According to [2], [3], the matrix 
X can be written in the form of   

  (1.2) T=X TP

In order to be able to construct control laws that stratify 
abnormal behaviors of the AUV, it is necessary to develop 
an algorithm which produces a definite decision whether, 
and if so, which kind of failure has occurred. Since in 
subsection A we produced a statistical model of the 
system, this algorithm has to give a definitive and 
illuminating analysis of un-modeled (residual) dynamics. 
The results of this analysis must point to the answer 
whether the difference between the measured variables of 
the realized, factual process and our statistical model 
occur due to the dimensional compression or a 
fundamental model mismatch. The latter answer actually 
assumes that a technical fault has occurred such that it has, 
as a result, “spoilt” the dynamics of the factual, realized 
process in relation to the nominal process used for the 
extraction of the sub dimensional statistical model. Since 
the extracted sub dimensional model is of statistical nature 
(including a residual value), it is clear that a statistical 
measure is needed. Using the statistical model produced 
according to subsection A, it is possible to make 
conclusions on fault appearance by observing the 
statistical measure of the residual that covers the un-
modeled dynamics. There are many types of statistical 
measures but the one that we have decided to use is the 
Hotelling’s T2 statistics. 

 
where T is the matrix of projections (scores) and P the 
matrix of principal components. 
Matrix P has to consist of such vectors so that the variance 
of the projection T on the vector is maximal. In order to 
fulfill the previous condition, it can be shown that matrix 
P has to consist of eigenvectors of the covariance 
matrix . The eigenvectors have to 
be sorted respectively to the descending eigenvalues. 

cov( ) T=Σ X X

There are several criteria by which the number of 
principal components can be determined. The one that will 
be used in this work is that the number of chosen principal 
components must describe at least 80% of the total 
variance. One of the ways to determine the percentage of 
the total variance is using a cumulative sum. The 
cumulative sum gives the percentage of the described 
variance using eigenvalues of each principal component. 
It can be calculated using (1.3) 

T2 statistics or Hotelling’s distance can be defined as: 
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where xi is the i-th row in matrix X and m is vector of 
mean values of referent data [10], [11]. Matrix D is a 
diagonal matrix containing eigenvalues of Σ. R is a 
number of principal components of the referent model and 
I number of charge modeled in the referent model. 
Calculated value di becomes the actual residual signal, 
whose value is monitored during the AUV mission and 
figures in the fault-detection logic. 

If the process is working in a fault-free regime, the 
calculated statistic measure should not vary considerably. 
On the other hand, if the fault is injected, this measure 
should show deviation from its fault-free value.  

where ψi is the eigenvalue, r the total number of 
eigenvalues and i the number of chosen principal 
components [2]. 

C. Creating a statistical model 

Once the number of principal components (l) is 
determined (normally it is l<m), the initial matrix X can be 
described with l greatest eigenvalues (eigenvectors) of the 
covariance matrix Σ. In other words, matrix X can be 
expressed with (1.4) and (1.5) 

  (1.4) T= +X TP E
 , (1.5) T=E TP

If an underwater vehicle is performing a maneuver, 
then the set point value for at least some, and in the case 
of a detailed dynamical model (which models DOF 
coupling), most or all of the 6 DOF, varies in time. I.e, the 
AUV control block is performing in a tracking, rather than 
regulation mode. Therefore, it is not possible to arrive at a 
statistical model because the behavior of the system is not 
predictable, in a simple, algebraic sense. This points to the 
constraint of fault detection methods relying on the usage 
of the statistical model of the AUV. It follows that such 
methods, among which is the PCA approach, are limited 



to regimes of AUV navigation and operation where the set 
point signal is constant for a reasonably long period of 
time. In other words, set points for the measured variables 
must have definitive and unchanging values on a 
timescale much greater than the transients of the control 
loop.  

EXPERIMENTAL VERIFICATION 

A statistical model is based on finding mean values ix  

and deviations 
ixσ  of measured states in a fault-free 

regime. This has to be done so the data acquired later 
would be normalized correctly using (1.7). 
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D. 

III. 

A. 

 (1.7) 

Process Description and Fault Scenario 
The system used to test the ability of the PCA method 

to identify the occurrence and nature of the faults is a 
common linear time-invariant DC motor in the propulsion 
unit of the AUV. Its parameters and performance indices 
do not influence the stability or effectiveness of the 
algorithm because the method is not model-based. The 
input signal into the system is set point speed ωSP. 
Measured state variables are measured speed ω, measured 
armature current ia and the output of the current PI 
controller ua. 

Faults whose effects and identification is explored with 
the experiment are: 

Fault 1: Increase of the load inertia. In a normal work 
regime, a physical abruption of the motor can occur, e.g. a 
cord can get wound up around the shaft or a piece of 
underwater debris can get stuck in the propeller. This type 
of fault causes the inertia of the load to increase, which 
can eventually cause irreparable damage via inciting the 
DC motor to spark and short-circuit.  

Fault 2: Drift of the speed sensor. Over time, marine 
speed sensors can accumulate a drift-type error. This 
occurs with the clogging and corrosion of the impeller and 
the shaft of the tachometer exposed to adverse 
environmental conditions, the oxidation of the windings 
within the tachometer and other effects of wear and tear. 
This fault usually occurs gradually, and the detection is 
possible once a certain value of the measurement drift is 
reached. 

This acquisition can be performed either offline or 
online. The offline method is based on building a database 
with mean values and deviations of measured data for 
every possible value of a set point signal (say using test 
runs in a controlled safe environment or by running 
simulations on a detailed, first-principles model). This 
approach requires significant memory space but offers the 
advantage of fault detection being possible immediately 
after the transient is over. The online method requires a 
finite fault-free period in which the mean values and 
deviations can be calculated based on the data acquired in 
this period of time. The greatest advantage of this 
approach is that there is no need for great memory stores 
but the downside is the requirement of a finite fault-free 
period. Weighing the relative merits of the two 
approaches, it is easily discernible that the online 
approach is much better suited for use aboard AUVs. 
Following this line of reasoning, we have elected to use 
the online approach in the experiments. 

Fault 3: Drift of the armature current sensor. This fault 
can occur the same way as fault 2, over a prolonged 
period of time. The cause is the wear and tear of the 
current sensor i.e. aging-induced change of electrical 
characteristics of the measurement circuit and elements. 

All of these supposed faults are additive and therefore 
are easy to model. The simulation scheme with the control 
loop of current and speed together with faults is shown in 
Figure 2. 

The fault scenario is shown in Figure 1. 
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Partial PCA (PPCA) 
Up to this point it was assumed that the data matrix X 

consists of all measured output states. This approach can 
works for fault detection. However, it is not possible to 
make distinction between different faults i.e. perform fault 
localization using this approach. This is the reason why 
partial principal components analysis (PPCA) is 
introduced. 

PPCA takes reduced sets of measured data into 
consideration. The objective is to generate many sets of 
data and calculate PCA and Hotelling’s statistics for each. 
These calculations are the same as in PCA apart from 
matrix X being of smaller dimensions (the number of 
columns is smaller due to smaller number of measured 
data in each set).  

  
Figure 1: Fault scenario
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Figure 2: The detailed block diagram for the DC engine model with points and manner of additive fault injection 
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B.  Use of PCA on a DC Motor 
Using the PCA method, the data matrix X has to consist 

of all measured outputs. The samples taken into 
consideration are those produced in the interval between 
5s and 20s. This corresponds to the fault-free regime, 
according to Figure 1. The contribution of each principal 
component can be determined using (1.3). From Figure 5 
it is obvious that one principal component is enough to 
describe the process in principal component subspace. s 

Figure 5: Level
the statistical mo
Number of principal component
 of contribution to absolute precision of 
del of the principal components in order 
of absolute eigenvalue 



After calculating the matrix P and reducing it to the 
main eigenvalue (the matrix P2), we can produce a 
simulation scheme given in figure 3 which transforms the 
data to the reduced space and calculates Hotelling’s 
statistics (in other words, creates a residual). The low-pass 
Butterworth filter at the end of the processing chain is 
used to smooth the residual. Its use is essential because 
with the online method Hotelling’s statistics is calculated 
for every input sample so the residual signal can inherit 
significant noise from the state variables. This problem 
can be solved if Hotelling’s statistic is calculated for an 
interval of input samples of the state variables, but this 
also corresponds to the usage of a low-pass filter albeit a 
moving average one. 

 

Figure 7: Logical determination of occurred fault based 
on residual levels in Figure 6 

Finally, in the residual generated with the PCA block is 
shown in figure 6.  

 
Figure 6: Tracked residual signal through the simulation 

with fault scenario in Figure 1 

If a threshold is selected at the value of 3.75 (as is 
marked in figure 6) we can obtain fault detections as in 
figure 7. Times of detection are shown in . Note 
that the choice of the detection threshold influences both 
the measure of confidence and the speed of fault detection 
in a conflicting manner. Therefore, the best-case threshold 
should be the result of the solution to the optimization 
problem between these two conflicting criteria. However, 
these influences are very difficult to express analytically 
and consequently, an empirical setup of the threshold is 
preferred. The setup is a result of a set of borderline case 
studies using simulation software. With a threshold set up 
in this way, it is obvious that good results in fault 
detection are achieved. The problem with this approach is 
that the localization of the fault is impossible. The PCA 
block can detect faults on the basis of analyzing the 
overall residual signal over time. However, the 
amalgamated residual fails to be informative on which 
fault took place. This is the reason why Partial PCA is 
introduced in the next stage of the experiment. It is hoped 
that, in accordance with the theory, the separate residuals 
that it will generate will make localization, as well as 
detection, of the faults possible.  

TABLE 1

TABLE 1: OVERVIEW OF DETECTION SPEED FOR 
THREE SIMULATED TYPES OF FAULTS 

OCCURRING IN THE DC MOTOR FOR THE PCA 
ALGORITHM 

times in 
[s] START DETECTED END DETECT. 

END 

FAULT 1 20 20.65 40 46.95 

FAULT 2 60 60.07 80 90.43 

FAULT 3 100 102.67 104.07 122.33 

 

C. The Use of PPCA on a DC Motor 
 

In order to form a PPCA model it is necessary to group 
the three measured signals in all possible groups of two. 
That gives us three different PPCA blocks. The first takes 
ω and ia, the second ω and ua, and the third ia and ua. Using 
(1.3), we obtain contributions of each component as 
shown in figure 8. 

 

1 2
0

20

40

60

80

100

PPCA 1
1 2

0

20

40

60

80

100

PPCA 2
1 2

0

20

40

60

80

100

PPCA 3

98% 84% 93%

 
Figure 8: Level of contribution to absolute precision of 
the statistical model broken down by PC combinations 

for the PPCA localization in order of absolute eigenvalue 

The PPCA blocks have the same form as the PCA 
block detailed in figure 3, with the exception that not all 
output signals are present. The total simulation scheme 
using PPCA method is shown in Figure 9. 

The Block for detection and localization performs 
logical functions over the residuals “squared-off” via a 
relay set to the threshold value obtained empirically 
through simulation. Thus, the resultant residuals perform 



as logical functions with values exclusively 0 or 1, and 
can be subjected to logical functions. The full analysis of 
the system gives following connections between the 
residuals and the faults. 
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influence in the signal processing chain of the residual is 
the low-pass filter. However, if there were no filter 
included, the output would have been noisy and the 
threshold values would therefore have been difficult to 
determine. With the low-pass filter included, the residual 
rises more slowly causing the late detection. However, 
the residual is much smoother and threshold is easier to 
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ut and output relays create a logic value. Threshold 
ues, as was already described were chosen empirically 
the basis of boundary-condition experiments. In this 
roach, the threshold values are constant, for the sake 
simplicity and computational effectiveness. However, 
s to be assumed that better performance would be 
ieved with an adaptive threshold. Such an algorithm 
 theoretically sound adaptation of the threshold value 
 possible avenue for further research. 
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 theoretically sound adaptation of the threshold value 
 possible avenue for further research. 

 residuals generated by PPCA blocks are shown in 
re 10. The outputs from the block for fault detection 
 localization with the threshold of 0.1 are shown in 
re 11. It is obvious that the detection and localization 
e been performed successfully. It can be seen that 
re are slight delays in fault detection. They are mainly 
consequence of the way in which the residual 
erators are numerically set up. The dominant delaying 

determine. The graphs are also more intuitive in the case 
of graphical inspection. This could be exploited by 
having a fallback, last-ditch technique of eliminating 
potentially disastrous situations, using a human operator 
to decide the course of action, having conclusive 
information on the state of the AUV. 

 residuals generated by PPCA blocks are shown in 
re 10. The outputs from the block for fault detection 
 localization with the threshold of 0.1 are shown in 
re 11. It is obvious that the detection and localization 
e been performed successfully. It can be seen that 
re are slight delays in fault detection. They are mainly 
consequence of the way in which the residual 
erators are numerically set up. The dominant delaying 

determine. The graphs are also more intuitive in the case 
of graphical inspection. This could be exploited by 
having a fallback, last-ditch technique of eliminating 
potentially disastrous situations, using a human operator 
to decide the course of action, having conclusive 
information on the state of the AUV. 
  
Table 2 includes times of detection. Table 2 includes times of detection. 

 
Figure 10: Tracked residuals generated by the PPCA 

algorithm which allows for fault localization 



This simulation is important because it shows at what 
value of fault the detection occurs. With the threshold 
determined earlier, fault 3 is detected when it gains the 
value of 2. Fault 2 is detected at about 0.3 while fault 1 is 
detected at about 2.5. 

 

IV. CONCLUSION 
PCA is a statistical method for fault detection and 

localization especially interesting to control engineers 
working with AUVs. The greatest advantage is that it is 
not necessary to know the model of the system in order to 
make a conclusion on fault appearance. This means that 
the method is appropriate for systems that cannot be 
easily or ever modeled, or for which the model is 
nonlinear, hybrid, or structurally ill-posed. Another 
advantage of the PCA is that, in addition to the additive 
faults, it is possible to detect multiplicative faults too. 

The only requirement set on the method is the 
constructability of the statistical model. As was 
mentioned in subsection II.A, statistical model cannot be 
created for unpredictable or analytically challenging 
changes of the control signal. That is the greatest 
disadvantage of the method. 

Figure 11: Resulting logical determination of fault 
occurrence as well as identification of the type of failure 

TABLE 2: OVERVIEW OF DETECTION SPEED FOR 
THREE SIMULATED TYPES OF FAULTS 

OCCURRING IN THE DC MOTOR FOR THE PPCA 
ALGORITHM 

times in 
[s] START DETECTED END DETECT. 

END 

FAULT 1 20 21.3 40 41.67 

FAULT 2 60 60.16 80 82.9 

FAULT 3 100 102.67 104.07 120.33 

Further research might concentrate on improving 
detection dynamics and robustness. This could be 
achieved by following through on ideas tied to post-
filtering the residuals through a nonlinear or adaptive 
filter of some sort, or by implementing an algorithm for 
the adaptation of the detection threshold itself. 
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