Pregled bibliografske jedinice broj: 195270
Square roots with many good approximants
Square roots with many good approximants // Integers, 5 (2005), 3; 1-13 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 195270 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Square roots with many good approximants
Autori
Dujella, Andrej ; Petričević, Vinko
Izvornik
Integers (1553-1732) 5
(2005), 3;
1-13
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
continued fractions; Newton's method
Sažetak
Let d be a positive integer that is not a perfect square. It was proved by Mikusinski in 1954 that if the period s(d) of the continued fraction expansion of sqrt(d) satisfies s(d) <= 2, then all Newton's approximants R_n = 1/2 (p_n/q_n + dq_n/p_n) are convergents of sqrt(d). If R_n is a convergent of sqrt(d), then we say that R_n is a good approximant. Let b(d) denote the number of good approximants among the numbers R_n, n=0, 1, ..., s(d)-1. In this paper we show that the quantity b(d) can be arbitrary large. Moreover, we construct families of examples which show that for every positive integer b there exist a positive integer d such that b(d)=b and b(d) > s(d)/2.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Napomena
Rad je prezentiran na skupu The 2004 Number Theoretic Algorithms and Related Topics Workshop ; AO6.
POVEZANOST RADA
Projekti:
0037110
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews
- Zentralblatt MATH