Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 188090

Hidden Markov models and function prediction for polyketide synthase domains


Goldstein, Pavle; Basrak, Bojan; Žučko, Jurica; Starčević, Antonio; Hranueli, Daslav; Long, F. Paul; Cullum, John
Hidden Markov models and function prediction for polyketide synthase domains // Program and Abstracts / Kniewald, Zlatko et al. (ur.).
Zagreb: Hrvatsko Društvo za Biotehnologiju, 2005. str. 32 (L-22) (predavanje, nije recenziran, sažetak, znanstveni)


CROSBI ID: 188090 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Hidden Markov models and function prediction for polyketide synthase domains

Autori
Goldstein, Pavle ; Basrak, Bojan ; Žučko, Jurica ; Starčević, Antonio ; Hranueli, Daslav ; Long, F. Paul ; Cullum, John

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Program and Abstracts / Kniewald, Zlatko et al. - Zagreb : Hrvatsko Društvo za Biotehnologiju, 2005, 32 (L-22)

Skup
Biotechnology and Immuno-Modulatory Drugs

Mjesto i datum
Zagreb, Hrvatska, 20.02.2005. - 23.02.2005

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Nije recenziran

Ključne riječi
Polyketides and non-ribosomal peptides; genome sequencing projects; hidden Markov model; HMM-based unsupervised learning; family of domains; functional subfamilies

Sažetak
Polyketides (PK) and non-ribosomal peptides (NRP) are large families of biologically active compounds (e.g. the immunosupressants rapamycin and cyclosporin, the antibiotics erythromycin and penicillin). The complex enzymes that produce these substances - PK synthases and NRP synthetases - are divided into modules, which, in turn, consist of clearly defined functional units, called domains. Moreover, knowing the function of each domain enables one to determine the resulting compound. Genome sequencing projects of several PKS and NRPS hosts have revealed a large number of PKS and NRPS gene-clusters with unknown domain functions. It is of great interest to predict the function of these domains and scan the resulting compounds for biological activity or combinatorial biosynthesis potential. The prediction is obtained by considering a probabilistic model of the multiple alignment of domains in question, and combining it with a hidden Markov model (HMM)-based unsupervised learning method. This yields a division of the family of domains into several functional subfamilies. For example, we were able to predict two major functional groups for substrate recognition among acyltransferases, one of them showing further subdivision into two subfamilies. We can also recognise two major functional groups among ketoreductases with putative different stereochemistry during the ketoreductase reaction. Further applications of the method will be discussed.

Izvorni jezik
Engleski

Znanstvena područja
Biotehnologija



POVEZANOST RADA


Projekti:
0058008

Ustanove:
Prehrambeno-biotehnološki fakultet, Zagreb

Profili:

Avatar Url Jurica Žučko (autor)

Avatar Url Pavle Goldstein (autor)

Avatar Url Daslav Hranueli (autor)


Citiraj ovu publikaciju:

Goldstein, Pavle; Basrak, Bojan; Žučko, Jurica; Starčević, Antonio; Hranueli, Daslav; Long, F. Paul; Cullum, John
Hidden Markov models and function prediction for polyketide synthase domains // Program and Abstracts / Kniewald, Zlatko et al. (ur.).
Zagreb: Hrvatsko Društvo za Biotehnologiju, 2005. str. 32 (L-22) (predavanje, nije recenziran, sažetak, znanstveni)
Goldstein, P., Basrak, B., Žučko, J., Starčević, A., Hranueli, D., Long, F. & Cullum, J. (2005) Hidden Markov models and function prediction for polyketide synthase domains. U: Kniewald, Z. (ur.)Program and Abstracts.
@article{article, author = {Goldstein, Pavle and Basrak, Bojan and \v{Z}u\v{c}ko, Jurica and Star\v{c}evi\'{c}, Antonio and Hranueli, Daslav and Long, F. Paul and Cullum, John}, editor = {Kniewald, Z.}, year = {2005}, pages = {32 (L-22)}, keywords = {Polyketides and non-ribosomal peptides, genome sequencing projects, hidden Markov model, HMM-based unsupervised learning, family of domains, functional subfamilies}, title = {Hidden Markov models and function prediction for polyketide synthase domains}, keyword = {Polyketides and non-ribosomal peptides, genome sequencing projects, hidden Markov model, HMM-based unsupervised learning, family of domains, functional subfamilies}, publisher = {Hrvatsko Dru\v{s}tvo za Biotehnologiju}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Goldstein, Pavle and Basrak, Bojan and \v{Z}u\v{c}ko, Jurica and Star\v{c}evi\'{c}, Antonio and Hranueli, Daslav and Long, F. Paul and Cullum, John}, editor = {Kniewald, Z.}, year = {2005}, pages = {32 (L-22)}, keywords = {Polyketides and non-ribosomal peptides, genome sequencing projects, hidden Markov model, HMM-based unsupervised learning, family of domains, functional subfamilies}, title = {Hidden Markov models and function prediction for polyketide synthase domains}, keyword = {Polyketides and non-ribosomal peptides, genome sequencing projects, hidden Markov model, HMM-based unsupervised learning, family of domains, functional subfamilies}, publisher = {Hrvatsko Dru\v{s}tvo za Biotehnologiju}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font