Pregled bibliografske jedinice broj: 184485
A Characterization of $h$-Brownian Motion by its Exit Distributions
A Characterization of $h$-Brownian Motion by its Exit Distributions // Probability theory and related fields, 92 (1992), 1; 241-50 doi:10.1007/BF01205235 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 184485 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Characterization of $h$-Brownian Motion by its Exit Distributions
Autori
Vondraček, Zoran
Izvornik
Probability theory and related fields (0178-8051) 92
(1992), 1;
241-50
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
$h$-Brownian motion ; Markov process ; exit distribution ; time-change
Sažetak
Let $X^h$ be an $h$-Brownian motion in the unit ball $D\subset R^d$ with $h$ harmonic, such that the representing measure for $h$ is not singular with respect to the surface measure on $\partial D$. If $Y$ is a continuous strong Markov process in $D$ with the same exit distributions as $X^h$, then $Y$ is a time change of $X^h$. Similar results hold in simply connected domains in $C$ provided with either the Martin or the Euclidean boundary.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Zoran Vondraček
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts
- Mathematical Reviews