Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 175239

Class number one quadratic fields and solvability of some Pellian equations


Širola, Boris
Class number one quadratic fields and solvability of some Pellian equations // Acta Mathematica Hungarica, 104 (2004), 1-2; 127-142 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 175239 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Class number one quadratic fields and solvability of some Pellian equations

Autori
Širola, Boris

Izvornik
Acta Mathematica Hungarica (0236-5294) 104 (2004), 1-2; 127-142

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
quadratic field; quadratic form; principal ideal; class number; Pellian equation

Sažetak
Consider these two types of positive square-free integers $d\neq 1$ for which the class number h of the quadratic field $Q(\sqrt (d))$ is odd: (1) d is prime $\not\equiv 1(mod 8)$, or d=2q where q is prime $\equiv 3(mod 4)$, or d=qr where q and r are primes such that $q\equiv 3(mod 8)$ and $r\equiv 7(mod 8)$ ; (2) d is prime $\equiv 1(mod 8)$, or d=qr where q and r are primes such that $q\equiv r\equiv 3 or 7(mod 8)$. For d of type (2) (resp. (1)), let $\Pi$ be the set of all primes (resp. odd primes) $p\in N$ satisfying (d/p)=1. Also, let $\delta =0$ (resp. $\delta =1$) if $d\equiv 2, 3(mod 4)$ (resp. $d\equiv 1(mod 4)$). Then the following are equivalent: (a) h=1 ; (b) For every $p\in\Pi$ at least one of the two Pellian equations $Z^2-dY^2=\pm 4^{;\delta};p$ is solvable in integers ; (c) For every $p\in\Pi$ the Pellian equation $W^2-dV^2=4^{;\delta};p^2$ has a solution (w, v) in integers such that gcd(w, v) divides $2^{;\delta};$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
0037121

Profili:

Avatar Url Boris Širola (autor)


Citiraj ovu publikaciju:

Širola, Boris
Class number one quadratic fields and solvability of some Pellian equations // Acta Mathematica Hungarica, 104 (2004), 1-2; 127-142 (međunarodna recenzija, članak, znanstveni)
Širola, B. (2004) Class number one quadratic fields and solvability of some Pellian equations. Acta Mathematica Hungarica, 104 (1-2), 127-142.
@article{article, author = {\v{S}irola, Boris}, year = {2004}, pages = {127-142}, keywords = {quadratic field, quadratic form, principal ideal, class number, Pellian equation}, journal = {Acta Mathematica Hungarica}, volume = {104}, number = {1-2}, issn = {0236-5294}, title = {Class number one quadratic fields and solvability of some Pellian equations}, keyword = {quadratic field, quadratic form, principal ideal, class number, Pellian equation} }
@article{article, author = {\v{S}irola, Boris}, year = {2004}, pages = {127-142}, keywords = {quadratic field, quadratic form, principal ideal, class number, Pellian equation}, journal = {Acta Mathematica Hungarica}, volume = {104}, number = {1-2}, issn = {0236-5294}, title = {Class number one quadratic fields and solvability of some Pellian equations}, keyword = {quadratic field, quadratic form, principal ideal, class number, Pellian equation} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Mathematical Reviews





Contrast
Increase Font
Decrease Font
Dyslexic Font