Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 154507

SEICMIC CAPACITY OF STRUCTURAL ELEMENTS USING NEURAL NETWORKS


Stanić, Andreas; Sigmund, Vladimir; Guljaš, Ivica
SEICMIC CAPACITY OF STRUCTURAL ELEMENTS USING NEURAL NETWORKS // 13th World Conference on Earthquake Engineering, Conference Proceedings, Vancouver, BC, Canada / CAEE, ACGP, IAEE (ur.).
Vancouver: Mira Digital Publishing, 2004. str. 403-10 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 154507 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
SEICMIC CAPACITY OF STRUCTURAL ELEMENTS USING NEURAL NETWORKS

Autori
Stanić, Andreas ; Sigmund, Vladimir ; Guljaš, Ivica

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
13th World Conference on Earthquake Engineering, Conference Proceedings, Vancouver, BC, Canada / CAEE, ACGP, IAEE - Vancouver : Mira Digital Publishing, 2004, 403-10

Skup
13th World Conference on Earthquake Engineering, Vancouver, BC, Canada

Mjesto i datum
Vancouver, Kanada, 01.08.2004. - 06.08.2004

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
concrete; elements; experimental testing; evaluation; buildings

Sažetak
This paper presents the applicability of neural networks trained on the compiled experimental database to predict the seismic capacity of reinforced concrete walls and columns. The best built network is used for prediction of the behavior of new elements. Use of neural networks enables dependence analysis of observed behavior on different variables and simplifies behavior prediction of building elements under seismic loadings. It could be used for comparison with other methods for performance prediction of critical horizontal load carrying elements. For the seismic capacity evaluation required input for walls and columns is: type of loading, dimension and type of cross section, material properties and reinforcement. They are fed to the neural network trained on the experimental database and as output variables we get prognosis of: shear strength, failure type, critical loads and displacements. The whole procedure, input data, optimized neural network model and output variables are implemented in one worksheet.

Izvorni jezik
Engleski

Znanstvena područja
Građevinarstvo



POVEZANOST RADA


Projekti:
0149260
0149165

Ustanove:
Građevinski i arhitektonski fakultet Osijek

Profili:

Avatar Url Andreas Stanić (autor)

Avatar Url Vladimir Sigmund (autor)

Avatar Url Ivica Guljaš (autor)


Citiraj ovu publikaciju:

Stanić, Andreas; Sigmund, Vladimir; Guljaš, Ivica
SEICMIC CAPACITY OF STRUCTURAL ELEMENTS USING NEURAL NETWORKS // 13th World Conference on Earthquake Engineering, Conference Proceedings, Vancouver, BC, Canada / CAEE, ACGP, IAEE (ur.).
Vancouver: Mira Digital Publishing, 2004. str. 403-10 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Stanić, A., Sigmund, V. & Guljaš, I. (2004) SEICMIC CAPACITY OF STRUCTURAL ELEMENTS USING NEURAL NETWORKS. U: CAEE, ACGP, IAEE (ur.)13th World Conference on Earthquake Engineering, Conference Proceedings, Vancouver, BC, Canada.
@article{article, author = {Stani\'{c}, Andreas and Sigmund, Vladimir and Gulja\v{s}, Ivica}, year = {2004}, pages = {403-10}, keywords = {concrete, elements, experimental testing, evaluation, buildings}, title = {SEICMIC CAPACITY OF STRUCTURAL ELEMENTS USING NEURAL NETWORKS}, keyword = {concrete, elements, experimental testing, evaluation, buildings}, publisher = {Mira Digital Publishing}, publisherplace = {Vancouver, Kanada} }
@article{article, author = {Stani\'{c}, Andreas and Sigmund, Vladimir and Gulja\v{s}, Ivica}, year = {2004}, pages = {403-10}, keywords = {concrete, elements, experimental testing, evaluation, buildings}, title = {SEICMIC CAPACITY OF STRUCTURAL ELEMENTS USING NEURAL NETWORKS}, keyword = {concrete, elements, experimental testing, evaluation, buildings}, publisher = {Mira Digital Publishing}, publisherplace = {Vancouver, Kanada} }




Contrast
Increase Font
Decrease Font
Dyslexic Font