Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 154361

Newton's approximants and continued fractions


Dujella, Andrej
Newton's approximants and continued fractions // Number Theoretic Algorithms and Related Topics / Drmota, M. ; Larcher, G. ; Tichy, R. ; Winkler, R. (ur.).
Strobl: Technische Universitat Wien, 2004. str. 8-9 (pozvano predavanje, nije recenziran, sažetak, znanstveni)


CROSBI ID: 154361 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Newton's approximants and continued fractions

Autori
Dujella, Andrej

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Number Theoretic Algorithms and Related Topics / Drmota, M. ; Larcher, G. ; Tichy, R. ; Winkler, R. - Strobl : Technische Universitat Wien, 2004, 8-9

Skup
Workshop on Number Theoretic Algorithms and Related Topics

Mjesto i datum
Strobl, Austrija, 27.09.2004. - 01.10.2004

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Nije recenziran

Ključne riječi
continued fractions; Newton's formula

Sažetak
Let d be a positive integer which is not a perfect square. Let p_n/q_n denote the n-th convergent and s(d) the length of the shortest period in the simple continued fraction expansion of sqrt(d). It was proved by Mikusinski in 1954 that if s(d)<=2, then all Newton's approximants R_n=1/2(p_n/q_n + dq_n/p_n) are convergents of sqrt(d), and moreover R_n=p_{; ; 2n+1}; ; /q_{; ; 2n+1}; ; for all nonegative integers n. If r_n is a convergent of sqrt(d), then we say that R_n is a "good approximant". In 2001, we proved the converse of Mikusinski's result, namely that if all approximants are good, then s(d)<=2. It is easy to see that R_n>sqrt(d). Therefore, good approximants satisfy R_n=p{; ; 2n+1+2j}; ; /q_{; ; 2n+1+2j}; ; for an integer j=j(d, n). If s(d)<=2, then j(d, n)=0. For s(d)>2, we proved the upper bound |j(d, n)|<=(s(d)-3)/2, and we presented a sequence of d's (given in terms of Fibonacci numbers) which shows that this upper bound for |j(d, n)| is sharp. Let b(d) denote the number of good approximants among the numbers R_n, n=0, 1, ..., s(d)-1. We will present some results and conjectures (based on experimental data) about the magnitude of s(d) compared with d and s(d).

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
0037110

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Andrej Dujella (autor)


Citiraj ovu publikaciju:

Dujella, Andrej
Newton's approximants and continued fractions // Number Theoretic Algorithms and Related Topics / Drmota, M. ; Larcher, G. ; Tichy, R. ; Winkler, R. (ur.).
Strobl: Technische Universitat Wien, 2004. str. 8-9 (pozvano predavanje, nije recenziran, sažetak, znanstveni)
Dujella, A. (2004) Newton's approximants and continued fractions. U: Drmota, M., Larcher, G., Tichy, R. & Winkler, R. (ur.)Number Theoretic Algorithms and Related Topics.
@article{article, author = {Dujella, Andrej}, year = {2004}, pages = {8-9}, keywords = {continued fractions, Newton's formula}, title = {Newton's approximants and continued fractions}, keyword = {continued fractions, Newton's formula}, publisher = {Technische Universitat Wien}, publisherplace = {Strobl, Austrija} }
@article{article, author = {Dujella, Andrej}, year = {2004}, pages = {8-9}, keywords = {continued fractions, Newton's formula}, title = {Newton's approximants and continued fractions}, keyword = {continued fractions, Newton's formula}, publisher = {Technische Universitat Wien}, publisherplace = {Strobl, Austrija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font