аЯрЁБс;ўџ "%ўџџџ#џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџRoot Entryџџџџџџџџ РF†v ŸиМРCompObjџџџџџџџџџџџџbWordDocumentџџџџџџџџ"hObjectPoolџџџџ†b…нЬМ†b…нЬМд 4@д §џџџўџџџўџџџўџџџўџџџ  F  !?џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџ@ABCDENGHIJKLMOPQRSTUVdџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџSummaryInformation(џџџџџџџџџџџџ џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџўџџџ ўџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџa informatikuUprava za informatiku@†эУтїCМ@†ГЯ€иМ@†гиМdp$@<ўмQMicrosoft Word 6.088аЯрЁБс;ўџ џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџўџ џџџџ РFMicrosoft Word 6.0 Document MSWordDocWord.Document.6;ўџ ўџ р…ŸђљOhЋ‘+'Гй0№˜м@d ˆ Ќ ає <`„ ЈЬn on. The malolactic fermentatio(C:\MSOFFICE\WINWORD\TEMPLATE\NORMAL.DOTKELECTROCHEMICAL STUDY OF LACQUERED TINPLATE AND ALUMINIUM CANS PERFORMANCEUprava zkuUprava za informatikuаЯрЁБс;ўџ ўџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџмЅe=Р deА/"h‹,NpNpRRRRR ]šRr ] ] ] ](]L ]юfXt]x]x]x]x]|]|]|]Џ]Б]Б]Б]Ю]ъ^`FgTšgˆ$`ЪR|] x]|]|]|]$`|]RRx]t]|]|]|]|]Rx]Rx]Џ]R2FRTRRRR|]Џ]|]3|]ELECTROCHEMICAL STUDY OF LACQUERED TINPLATE AND ALUMINIUM CANS PERFORMANCE K.Galiц, N.Cikoviц and Z.Mesiц* Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia * “PANONSKA PIVOVARA”, HR-48300 Koprivnica, Croatia ABSTRACT Electrochemical methods are often used to study the protective characteristics of organic coatings on the metal substrate. DC and AC measurements were performed on lacquered tinplate and aluminium cans aimed for carbonated drink packaging. Redox potential (rH), and pH of carbonated beverage were determined. Similar corrosion current values were obtained for tinplate (0.15 - 0.8 nA cm-2) and aluminium cans (0.17 - 0.41 nA cm-2). The resistance of the coatings exceeded 108 ( cm2 and did not change much after seven days of being exposed to an electrolyte. A suitable well fitting linear correlation, in case of the aluminium cans was found between i corr and dissolved aluminium (r = 0.9227). As for the tinplate cans good correlation was found between the i corr and dissolved Fe ions (r = 0.9353) as well as dissolved Sn ions (r = 0.9574). Good correlation exist between several electrochemical parameters: Rp / i corr (r = 0.5210); Rp / E corr (r = 0.6738) and E corr / C po (r = -0.6958). INTRODUCTION Internal organic protection is a factor of growing importance in metallic cans intended for food and beverages packaging. Food manufacturers are requiring better performance from food can lacquers especially those aimed for aggressive foodstuff packaging. Since interactions between the food products and the cans are essentially electrochemical in nature, electrochemical tests are highly suitable for rapid testing of the behaviour of metal cans, parties were also analysed by atomic absorption spectrometry for the Al, Sn (“Fillips Analytical” SP 9) and Fe (“Varian” Spectra 10) presence. Beverage cans, with an exposed area of 248 cm2, represented a working electrode. A saturated calomel electrode (SCE) was employed as the reference electrode, while the platinum grid was used as the counter electrode. Wenking potentiostat (Model LB 81 H) and Wenking Voltage Scan Generator (Model USG 83) were used for d.c. measurements. The measurements were carried out starting from the corrosion potential, firstly to the cathodic then to the anodic direction at scan rate of 10 mV/sec. The corrosion current (i corr) was determined from the intersection of the extrapolated anodic and cathodic Tafel lines. Polarization resistance (Rp) was calculated from the polarization curve in the vicinity of the corrosion potential. For the A.C. measurements EG&G Potentiostat/Galvanostat 273 Model and EG&G Two Phase Lock-in Analyser, connected to a computerised system for data analysis and storage, were used. Impedance measurements were carried out starting from the corrosion potential by applying a sinusoidal signal of 5 mV in amplitude in a frequency range of 100 kHz - 5 Hz . In order to evaluate the impedance changes of the system with time, specimens were left immersed in carbonated beverage during 168 hours (v = 330 mL). From the impedance data, the capacitance ( Cpo) and resistance of the paint film (Rpo) were determined by fitting a simple RC circuit to the impedance data using the appropriate software. The presented results are the mean value of five cans used for each measurement. The present investigation has been carried out to evaluate the usefulness of electrochemical techniques for corrosion monitoring in order to obtain information of the corrosion process of lacquered cans aimed for carbonated drink packaging. The correlation between the results obtained from D.C. and A.C. electrochemical techniques was also performed. RESULTS AND DISCUSSION Fig.1 shows some examples of the polarization behaviour of the lacquered tinplate and aluminium cans filled with carbonated beverages after 2 and 24 hours of immersion. A mean corrosion current of 0.15 nA cm-2 and 0.22 nA cm-2 for tinplate and aluminium cans respectively, were obtained after 2 hours of immersion. The tin, iron and aluminium content represented in Table I were estimated by applying Faraday’s low (values determined by atomic absorption were less then 0.1 ppm). An excellent correlation is found between pH and dissolved ion content: r = 0.808052 for iron, r = 0.783916 for tin, in case of tinplate cans; and r = 0.731775 for aluminium in aluminium cans . Relationship between dissolved aluminium and corrosion current vs. pH values, in aluminium cans (Fig.2), was found to be linear . The correlation coefficient (r) between i corr and dissolved aluminium was 0.9227. In case of tinplate cans (Fig.2) tin and iron dissolution as well as corrosion current vs. pH values, could be described by a second stage polynom. It was found by statistical analysis with 91.7% confidence that corrosion current values are due to tin dissolution. After 24 hours corrosion current values slightly decreased (Table II) for both type of cans. This could be due to complex coating/metal oxide/metal interactions taking place (4-6). The pore resistance values, Rpo, calculated from the impedance data, (Fig. 3) are represented in Table II. The values of Rpo = 7.5 x 108 (cm2, and Rpo = 1.1 x 109 ( cm2 were obtained after 2 hours of exposure in carbonated beverage for aluminium and tinplate cans respectively. After 24 hours these values slightly decreased for both aluminium (1.8 x 108 ( cm2) and tinplate (3.8 x 108 ( cm2) cans. Capacitance value of 10-9 F cm-2 was found for both type of cans after 168 hours. In the study on food packaging materials capacitance values lower than 10-8 F cm-2 are in accordace with the coating area penetrated by the electrolyte (8) It is widely believed that degradacularly lacquered ones. The processes occurring at the metal-electrolyte interface are numerous and different in nature. The presence of an organic coating makes the system even more complex, as the electrical and electrochemical properties of the coating are introduced. As explained by Tait (1) traditional DC measurements cannot fully describe the situation. The applications of AC impedance to food packaging materials has shown the importance of electrochemical parameters, enabling both lacquer quality and corrosion evaluation in the presence of aggressive food products, to be analysed (2-3). The aim of this work was to obtain relevant information on the protective power of organic coatings and their changes over time when exposed to an aggressive environment as well as to determine the usefulness of direct current (D.C.) and alternating current (A.C.) methods for coating analysis on tinplate and aluminium cans aimed for food/beverage packaging. EXPERIMENTAL Polarization (D.C.) and impedance (A.C.) measurements were performed on tinplate and aluminium cans. For this purpose an empty cans were obtained from producer and then filled with carbonated beverages. Measurements were performed after 2, 24 and 168 hours of exposure in electrolyte at 25 oC. pH (EA 940 "Orion" Expandable Analyser, electrode model 91-02) and redox potential (rH, Model EA 940 "Orion" Expandable Analyser, electrode model 96-78) values were determined for all investigated electrolytes before and after DC polarisation. ElectrolytLMl"ЌЎжи  ЛП+/ШЪЮвцчь№ '5Щ з ћќŠ‹ЙК‘• ˜šРТпіЧЩикlpy{жиуфцчщъђєџПРСТХЦопрсфх ‰ќњјњќњѕњѕњѕњ№њѕњэњэњэњэњэњэњэњэњќњќњѕњщњѕњэњэњэњэњќњѕњѕњэњэњэњѕњ№њѕњэњѕњ№њѕњѕњ№њѕњѕњ№њѕњѕњѕњ]c]hJW]]h]]U]\‰‹’A C ] _ у ф ы ь э ю ё ђ #!%!&!)!*!a!b!c!d!g!h!в"г"д"с"ф"## #%#&#J#K#Q#U#i#m#s#u#Ž#š#Ќ%­%з%и%х%ч%ќ%&Л&Ш&ъ&ь&' 'О'П'С'(( (<(=(j(l(ј())H)a)c)–)7*\*^*e*r*x*…*‹*˜**Ћ*А*?+d+ќњќњїњїњќњќњђњќњќђњќњќњђњќњїќњїњїќњїњїњїњїњїњяњќњїњїњяњяњяњяњьяњьяњяњяњящцяњяњяњяњяњяњяњяњяU]U]V]U]JW]]h]]h[d+f+k+y++Œ+’+Ч+X,Z,y,~,,ž, ,Є,Ѕ,И,Н,П,Р,г,д,ц,ш,ь,э,----.-/-0-8-H-I-R-S-U-V-W-Z-[-\-l-m-v-w-y-z-‰-Š-“-”-–-—-™-Ё-Б-В-Л-М-О-П-Т-У-Ф-д-е-о-п-с-т-ё-ђ-ћ-ќ-ў-џ-. ...$.'.).-./.0.@.B.K.§њ§њ§њ§њ§њ§њ§њіњ§њђњ§њ§њіњ§њ§њ§њіњ§я§я§њщњђњ§я§я§њ§я§я§њіњ§я§я§щњђњ§я§я§њ§я§я§њіњ§я§я§њђњ§я§ JWU]]hU]hU]hU]]\K.M.O.P.W.Z._.a.e.j.l.n.™.š.›.œ.І.Ј.А.г.д.е.й.н.о.п.ќ.§.ў.џ.///%/&/*/4/7/А/Я/а/№/ё/ђ/є/ј/pN}N~NžNЁNЄNЅNІNЇNЈNЖNеNѕNіNїNјNћNќNџNOOOO O O OO7O;O\OoO{O‡OЅOЊOБOКOзOкOфOяOќњјњњќњќѕњѕёѕёѕяњѕёѕёѕяѕёѕёѕяњьњьъњњњњњњъњњњњњњњњњњъььььььььььѕѕѕѕњњњњњњњњњњњьѕњѕuU]]U]hU]U]]hV,LMmœл!"YZ\]%'45АБ  ] ^ Ч Ш Щ ж з Š‹f§§Ј!§Ј!§Ј!§Ј!§Ј!§Ј!§Ј!§Ј!§Ј!ћЈ!№Ј!эЈ!№џЈ!~уЈ!ллЈ!л§Ј!еЈ!ааЈ!аЈ!аЈ!аЈ!аЈ!аЈ!аЈ!аЈ!ЫЈ!ааЈ!аЈ!аЈ!аЈ!ўаЈ!ўпќЉ пќч њќЉч$fgh абk*|нпіїЛ–—Ђмнj!k!""›"œ"Œ##Ž#š#›#$$ћ%ќ%§%ў%&&К&Л&Ч&ћЈ!ћЈ!ћЈ!ћЈ!ћЈ!ћЈ!ћЈ!ѕЈ!ѕЈ!ѕЈ!ѕЈ!яЈ!ћћ Ј!ћЈ!ћЈ!ћЈ!ѕџЈ! ћћџЈ!ћЈ!ћЈ!ћЈ!ћЈ!ћЈ!ћЈ!ћЈ!ћЈ!ъЈ!ћћЈ!ћЈ!чЈ!ъЈ!фЈ!ъЈ!фЈ!чЈ!ъъЈ!№№(Ч&Ш&ћ&.'b'Ž'Я'(K({(і(ї(b)c)l)t)w)z)~)„)пЈ!ООЈ!ОЈ!пЈ!ООЈ!ОЈ!ŸЈ!{Ј!vЈ!ppЈ!m%m%m m•m%m%ŒЊ# пЊVў 4џџ. 4џџ.   4џџ.   4џџ.„)‡)))–)—)˜))Ѓ)Њ)А)Б)В)Г)И)О)Х)Ы)Ь)Э)Ю)г)й)р)ц)ч)ш)щ)ю)є)ћ)**** *§m§m§m§mшmЦ%§ §•§%§m§mшmЦ%§ §•§%§m§mшmЦ%§ §•§%§m§mшmЦ%§ §•§%§m§mшmЦ%§ ! хў 4џџ.ИlЛ О73 }Р# *******#*)*/*5*6*7*]*^*e*n*o*p*q*r*x*y*‚*ƒ*„*…*‹*Œ*§•§%§m§mшmЦ%§ §•§%§m§mшm§ѕЖѕ§§•Б%БhБhh§§•Б%БhБhh§§•ИlЛ О7 }П5џИlЛ О7! хў 4џџ.ИlЛ О73 }РŒ**–*—*˜*ž*Ÿ*Ј*Љ*Њ*Ћ*Б*В*Г*М*Н*О*П*Ф*Ъ*Ы*Ь*г*д*е*к*р*с*ћ%ћhћhчhфф•ф%фmфmаmфф•ф%фmфmаmЎ%ф ф•ф%фmфm™mЎ%ф ф•ф%ИlЛ О73 }Р! хў 4џџ.ИlЛ О7 }РИlЛ О7 }П5џс*т*щ*ъ*ы*№*і*ї*ј*џ*+++ + ++++++!+"+#+)+*+++0+6+7+8+>+?+e+§m§mшmЦ%§ §•§%§m§mшmЦ%§ §•§%§m§mшmЦ%§ §•§%§m§mшmЦ%§ §•§%§m§mшm§ѕ! хў 4џџ.ИlЛ О73 }Р Root Entryџџџџџџџџ РF†xŠ‚иМ'РCompObjџџџџџџџџџџџџbWordDocumentџџџџџџџџ(@hObjectPoolџџџџ†b…нЬМ†b…нЬМд 4@д џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџ Fџџџџџџџџџџџџ !?$§џџџўџџџўџџџўџџџ&)*+,-./ 123456789:;<ўџџџџџџџџџџџ@ABC0џџџџџџџџGHIJKLMџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџSummaryInformation(џџџџџџџџџџџџ џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџўџџџ ўџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџa informatikuUprava za informatiku@†эУтїCМ@†YЩиМ@†ћ)|‚иМdp$@р‘ГRMicrosoft Word 6.089аЯрЁБс;ўџ џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџўџ џџџџ РFMicrosoft Word 6.0 Document MSWordDocWord.Document.6;ўџ ўџ р…ŸђљOhЋ‘+'Гй0№˜м@d ˆ Ќ ає <`„ ЈЬn on. The malolactic fermentatio(C:\MSOFFICE\WINWORD\TEMPLATE\NORMAL.DOTKELECTROCHEMICAL STUDY OF LACQUERED TINPLATE AND ALUMINIUM CANS PERFORMANCEUprava zмЅe=Р teА/@h‹,NpNpRRRRR ]šRr ] ] ] ](]L ] gXt]x]x]x]x]|]|]|]Џ]Б]Б]Б]Ю]ъ^`dgTИgˆ$`шR|] x]|]|]|]$`|]RRx]t]|]|]|]|]Rx]Rx]Џ]R2FRTRRRR|]Џ]|]3|]ELECTROCHEMICAL STUDY OF LACQUERED TINPLATE AND ALUMINIUM CANS PERFORMANCE K.Galiц, N.Cikoviц and Z.Mesiц* Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia * “PANONSKA PIVOVARA”, HR-48300 Koprivnica, Croatia ABSTRACT Electrochemical methods are often used to study the protective characteristics of organic coatings on the metal substrate. DC and AC measurements were performed on lacquered tinplate and aluminium cans aimed for carbonated drink packaging. Redox potential (rH), and pH of carbonated beverage were determined. Similar corrosion current values were obtained for tinplate (0.15 - 0.8 nA cm-2) and aluminium cans (0.17 - 0.41 nA cm-2). The resistance of the coatings exceeded 108 ( cm2 and did not change much after seven days of being exposed to an electrolyte. A suitable well fitting linear correlation, in case of the aluminium cans was found between i corr and dissolved aluminium (r = 0.9227). As for the tinplate cans good correlation was found between the i corr and dissolved Fe ions (r = 0.9353) as well as dissolved Sn ions (r = 0.9574). Good correlation exist between several electrochemical parameters: Rp / i corr (r = 0.5210); Rp / E corr (r = 0.6738) and E corr / C po (r = -0.6958). INTRODUCTION Internal organic protection is a factor of growing importance in metallic cans intended for food and beverages packaging. Food manufacturers are requiring better performance from food can lacquers especially those aimed for aggressive foodstuff packaging. Since interactions between the food products and the cans are essentially electrochemical in nature, electrochemical tests are highly suitable for rapid testing of the behaviour of metal cans, particularly lacquered ones. The processes occurring at the metal-electrolyte interface are numerous and different in nature. The presence of an organic coating makes the system even more complex, as the electrical and electrochemical properties of the coating are introduced. As explained by Tait (1) traditional DC measurements cannot fully describe the situation. The applications of AC impedance to food packaging materials has shown the importance of electrochemical parameters, enabling both lacquer quality and corrosion evaluation in the presence of aggressive food products, to be analysed (2-3). The aim of this work was to obtain relevant information on the protective power of organic coatings and their changes over time when exposed to an aggressive environment as well as to determine the usefulness of direct current (D.C.) and alternating current (A.C.) methods for coating analysis on tinplate and aluminium cans aimed for food/beverage packaging. EXPERIMENTAL Polarization (D.C.) and impedance (A.C.) measurements were performed on tinplate and aluminium cans. For this purpose an empty cans were obtained from producer and then filled with carbonated beverages. Measurements were performed after 2, 24 and 168 hours of exposure in electrolyte at 25 oC. pH (EA 940 "Orion" Expandable Analyser, electrode model 91-02) and redox potential (rH, Model EA 940 "Orion" Expandable Analyser, electrode model 96-78) values were determined for all investigated electrolytes before and after DC polarisation. Electrolytа/ІNЇNЈNІOЇOЈOЉOЊOмЈ!ЛЈ!šЈ!•Ј!’Ј!’Ј!’Ј!’Ј!   4џџ.   4џџ.# хў 4џџ.‹,ЖNџџџџ!џџ!џџ!џџ џџ џџ!џџ!џџ!џџ.“ 6B К%Ё(,‹,лš‚E!"YZ\]/<=!а б о “ nokl•/тфћќЌЗŽL< = > ? @ A B C O й П"Р"С"Т"г"д"~##‹#Œ#П#ђ#&$R$Э$%<%…%И%<&=&F&N&Q&T&X&^&a&g&j&q&r&w&}&„&Š&Œ&&’&˜&Ÿ&Ѕ&Ї&Ј&­&Г&К&Р&Т&У&Ш&Ю&е&л&н&о&у&щ&я&ѕ&ї&ј&§&' '''8'?'H'I'J'L'R'S'\']'_'e'f'g'p'r'x'y'‚'ƒ'…'‹'Œ''–'˜'™'ž'Є'Ѕ'І'Ў'Џ'Д'К'Л'М'Ф'Х'Ъ'а'б'в'к'л'р'ц'ч'ш'я'№'ѕ'ћ'ќ'§'(( (((((@(F(O(P(Q(S(Y(Z([(\(f(l(m(n(o(ц()2)3)4)?)H)Q)Z)i)x))‡)Œ)’)š)Ђ)Ї)­)Ў)Е)К)Р)Ч)Я)д)к)т)ъ)я)ѕ)і)§)****$*/*6*>*H*S*T*[*e*p*{*ƒ**˜*ž*І*А*Л*М*У*Э*и*у*ы*і*+ +++)+*+1+<+H+I+u+‹+Џ+К+и+у+,,,‹,Ј!Ј!Ј!Ј!Ј!џЈ!~Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј! Ј!Ј!џЈ!х Ј!џЈ!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!Ј!%% •%%mmmm% •%mm% •%mm% •%mm% •%mm% •%mm% •%mmѕ•%hh•%hh•%hh•%mm•%mm% •%mm% •%mm% •%mm% •%mm% •%mm% •%mmѕ•%hh•%hh•%hhЈ!Ј!Ј!Ј!]ъъъЃ~]ъЃ~]ъЃ~]ъЃ~]ъЃ~]ъЃ~]ъЃ~]ъЃ~]%ъЃ~]ъЃ~]ъЃ~]%ъЃ~]ъЃ~]ъЃ~]ъЃ~]ъЃ~]Л]Л]Л]ЛЈ!Ј!Ј!‰d+K.яOfЧ&„) *Œ*с*e+,U-P.а/ЊO !"#$%&(‹,‹,3Uprava za informatikuC:\FK\CONGRESS\TOKYO97.DOCџ@HP LaserJet 4LLPT1:HPPCL5EHP LaserJet 4L  Dз ќџ €Щ“№L3џ, HP LaserJet 4L  Dз ќџ €Щ“№L3џ, €~#~# €є~#~# > 4џџ. хўA 4џџ. ЊVў+ЗФ ФІФWФ7Ф6 ФТФ|ФVЗФ Ф5Ф6 Ф•B b nopЖжзи "#бгњў“/Јдѕ#6‡“”АМ ­ЏАяKUlŒЮь36-.< A B u!|!" "&"'"}#~#ђ#%$&$'$Q$R$Э$ %%-%;%<%И%&&&;&Џ(Я(а(б(з(и(й(к(4)x)’)­)Р)к)ѕ)* * ***/*S*p*s*v*x*˜*Л*и*л*о*п*р*+)+H+W+b+u+w+y+{+…+†+‡+ˆ+Џ+и+,Š,‹, OOZ Я/fgа/Э№/Я7Oё/!ђ/mє/”Я*Ї;Oѓ\O-oO~‹{OЇ\pNь}Nя>кOЃ~Nк‡O< žNe ЁN† ЄN~!ЅOŒ##ЊOР$БO\%[%c%Й&К&.'ЅNb'c'ІN{(Ž'ЇNM(ЈNЮ'Я'і(КOL)a)еNѕ+ѕNї+іNў+їN,Z, ž, И, г, ц, - - .- јN3- ћN5- U- y- –- ќNџNž- О- с- ў- O. O. ). O. n. фO‡. š. OO .  OЋ.  O­. д. §. &/Џ/XTimes New Roman Symbol &ArialюTimes New Roman CE HRTimes"ˆаh$BFUrFPrFYPdp$ƒMй"ˆJELECTROCHEMICAL STUDY OF LACQUERED TINPLATE AND ALUMINIUM CANS PERFORMANCEUprava za informatikuUprava za informatikuц,э,ѕ,њ,џ,-------#-(---.-8-@-J-T-U-ш@ффАф[ф@ш@ффАф[ф@Ь@ффАф[ф@Ь@ффАф[ф@ш@ффАф[ф@Ь@ффАф[ф@Ь@ффАф[ф@ш@ИlЛ ОХЁ +]uџџџџИlЛ ОХЁ +]uџџ$U-\-d-n-x-y-z--‹-•-–-Ё-Љ-Г-Н-О-Ф-Ь-ж-р-с-т-щ-ѓ-§-ў- ...(.).0.8.C.N.O.P.ќ%ќАќ[ќ@ф@ќќАќ[ќ@ф@ќќАќ[ќ@Ь@ќ%ќАќ[ќ@ф@ќќАќ[ќ@ф@ќќАќ[ќ@Ь@ќќАќ[ќ@ф@ќИlЛ ОХЁ +]uџџИlЛ ОХЁ +]uџџџџ$P.W.b.m.n.o.™.š.А.г.д.п.ќ.§./%/&/'/(/*/6/7/А/а/ќАќ[ќ@ф@ќќћЮћќќћИћќќћЂћќќћЂћŸЈ!šššЈ!šЈ!šЈ!šЈ!ИlЛ ОХЁ uџџИlЛ ОХЁ u ИlЛ ОХЁ u ИlЛ ОХЁ +]uџџџџe+f+l+u+v+w+x+y++€++‚+‹+Œ+’+“+”+•+ž+Ÿ+ + ,7,X,Y,Z,e,n,w,€,,,№ѕээ•ш%шhшhдhээ•ш%шhшhдhээ•ш%шhшhдhЯЈ!ЯЩЩЈ!ЦЦЈ!ТТАТАТАТ[Т@ŒЊŒЊИlЛ О7 }П5џИlЛ О7,ž,Ѕ,­,В,З,И,Р,Ш,Э,в,г,д,л,р,х,ц,э,ѕ,њ,џ,-------#-(---.-8-@-J-T-U-ш@ффАф[ф@ш@ффАф[ф@Ь@ффАф[ф@Ь@ффАф[ф@ш@ффАф[ф@Ь@ффАф[ф@Ь@ффАф[ф@ш@ИlЛ ОХЁ +]uџџџџИlЛ ОХЁ +]uџџ$U-\-d-n-x-y-z--‹-•-–-Ё-Љ-Г-Н-О-Ф-Ь-ж-р-с-т-щ-ѓ-§-ў- ...(.).0.8.C.N.O.P.ќ%ќАќ[ќ@ф@ќќАќ[ќ@ф@ќќАќ[ќ@Ь@ќ%ќАќ[ќ@ф@ќќАќ[ќ@ф@ќќАќ[ќ@Ь@ќќАќ[ќ@ф@ќИlЛ ОХЁ +]uџџИlЛ ОХЁ +]uџџџџ$P.W.b.m.n.o.™.š.А.г.д.п.ќ.§./%/&/'/(/*/6/7/А/а/ќАќ[ќ@ф@ќќћЮћќќћИћќќћЂћќќћЂћŸЈ!šššЈ!šЈ!šЈ!šЈ!ИlЛ ОХЁ uџџИlЛ ОХЁ u ИlЛ ОХЁ u ИlЛ ОХЁ +]uџџџџK @ёџ Normal ]a c"A@ђџЁ"Default Paragraph Font) cans, whilecpenetrated by the electrolyte (45,65-85 , 768 (1989).—œ  Єƒ.ЅШAІСЇЈСЉi Ћ trochemical data obtained, by DCAC (DC (A.C (AC(D.CACan excellentod products, to be analysed (2-4restpm). An excellent correlation was dissolution indicated by a rapid increase vs. pH , vs. pH after 168 hours of immersion in accordancecoefficient а/ІNЇNЈNІOЇOЈOЉOЊOмЈ!ЛЈ!šЈ!•Ј!’Ј!’Ј!’Ј!’Ј!   4џџ.   4џџ.# хў 4џџ.‹,ЖNџџџџ!џџ!џџ!џџ џџ џџ!џџ!џџ!џџ.“ 6B К%Ё(,‹,лš‚E!"YZ\]/<=!а б о “ nokl•/тфћќЌЗŽL< = > ? @ A B C O й П"Р"С"Т"г"д"~##‹#Œ#П#ђ#&$R$Э$%<%…%И%<&=&F&N&Q&T&X&^&a&g&j&q&r&w&}&„&Š&Œ&&’&˜&Ÿ&Ѕ&Ї&Ј&­&Г&К&Р&tion and loss of adhesion is indicated by a rapid increasing in Cpo and a rapid decrease in Rpo (4,7). According to many authors (4-6) the systems retain their corrosion protection while the coating resistance remains high (108 to 109 ( cm2 ), but fail when the resistance is low (below 107 ( cm2). Poor coatings are associated with measurements of 106 ( cm2. Mansfeld et al. (4) suggested that the observed decrease of pore resistance with exposure time is due to damage of the coating and the formation of conductive paths. After 168 hours of exposure into the carbonated beverage, large changes of the D.C. and A.C. parameters were not observed (Table II). Correlation coefficient of 0.7792 was found between Rp (D.C.) and Rpo (A.C.) values. Good correlation also exist between i corr and Rp (r = 0.5210), as well as between Rp and Ecorr (r = 0.6738), and Ecorr and Cpo values (r = -0.6958). CONCLUSIONS The D.C. and A.C. electrochemical data are shown to be very useful for lacquered cans examination when exposed to carbonated beverages. To examine the obtained data a computer program was used to obtain the best fitting regression equation. The results showed that the aluminium dissolution could be described by the linear equation. In case of tinplate cans, filled with carbonated beverage, iron and tin dissolution as well as corrosion current values are described by the polynomial equation. Coefficient of determination (R2) with 61 % confidence was found between Rp (D.C.) and Rpo (A.C.) parameters. ACKNOWLEDGEMENTS The authors wish to thank the Croatia food industry, “Panonska pivovara”, Koprivnica for providing financial support without which this work could not been carried out. REFERENCES: W.S. Tait, Poly.Mater.Sci.Eng., 58, 322 (1988). A.Montanari, Industria Conserve, 61, 129 (1986). Z.Klenowicz, and J.Rozwadowska-Lelinska, p.640, Proc.Eurocorr.’91, GTE, Budapest (1991). F.Mansfeld, M.W.Kendig and S.Tsai, Corrosion, 38, 478 (1982). J.E.O.Mayne and D.J. Mills, J.Oil Colour Chem. Assoc. 58, 155 (1975). H.Leidheiser, Jr., Prog.Org.Coat. 7, 79 (1979). W.S. Tait, J. Coat.Technol., 46, 768 (1989). A. Montanari, G. Milanese, A. Cassarр and R. Massini, 4th International Tinplate Conference, London (1988) , paper No. 23. Table I. Redox potential (rH), pH, and dissolved ion concentration* (ppm) data for carbonated beverages Beverage SamplespHrHFe (ppm)Sn (ppm)Al (ppm)3.0020.060.00530.0013.1020.500.00770.0163.0020.110.00630.0113.0020.090.00810.0173.1520.460.0410.0293.0520.450.0140.015correlation coefficient (r) between:pH /rH0.868319pH/Fe0.808052pH/Sn0.783916rH/Fe0.540257rH/Sn0.6374052.7020.460.00242.6020.700.00172.8021.420.00212.9021.120.0032.8021.150.0032.6020.410.002correlation coefficient (r) between:pH/rH0.778913pH/Al0.731775rH/Al0.300611 * estimated by applying Faraday’s low. Table II. Electrochemical data obtained, by d.c. and a.c. methods, for lacquered aluminium and tinplate cans filled with carbonated beverage. ParametersTime of exposure / hours/Aluminium CansTinplate Cansi corr 20.220.32nA cm-2 240.170.11 1680.410.32E corr 2-700-660mV /SCE 24-730-720 168-750-720Rp (d.c.) 26.2 x 1089.1 x 108 ( cm2 245.0 x 1083.0 x 108 1686.0 x 1084.2 x 108Rpo (a.c.) 27.5 x 1081.1 x 109( cm2 241.8 x 1083.8 x 108 1682.2 x 1082.5 x 108Cpo (a.c.) 21.0 x 10-98.9 x 10-10F cm-2 245.0 x 10-92.0 x 10-9 1684.0 x 10-91.0 x 10-9Correlation coefficint (r) between:Rp(d.c.) / Rpo (a.c.) 0.7792 icorr / Rp 0.5210Rp / Ecorr 0.6738 Key words: Aluminium cans , carbonated beverage, correlation coefficient, immersion test, impedance, polarization, tinplate cans, —œ  Єƒ.ЅШAІСЇЈСЉi Ћ r (Model USG 83) were used for DC F