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Abstract: Behaviour of linear arrays consisting of N+1 constantly spaced, omnidirectional 
radiating elements with uniform amplitude distribution and polynomial phase distribution 
shall be examined for the purpose of future applications to loudspeaker sound columns with 
the possibility of both beam steering and coverage angle control. 
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1. INTRODUCTION 
 
In most cases, the radiation pattern of a single radiating element does not meet the 
requirements for a certain application. Furthermore, it cannot be changed without serious 
modifications of the radiating element itself and even then the changes obtained in this 
manner are hardly ever satisfying. In order to obtain the desired radiation pattern, single 
radiating elements are assembled in one-dimensional, two-dimensional or, sometimes, three-
dimensional arrays. 
In this article calculations will be presented for one-dimensional, line array consisting of N+1 
omnidirectional radiating elements with constant spacing d between the elements, as shown in 
Fig. 1. The amplitudes of excitation signals supplying the elements are Ai and the phases of 
excitation signals are ai, where i = 0, 1,..., N-1, N. Angle θ  is defined as the angle between 
the positive z axis and the observed direction of the radiation.  
 

 
 

Fig. 1. Linear array with constant spacing 
 



In these calculations far- field approach shall be used, meaning that the observation point is 
located in the far field of the array, so all the paths between the radiating elements and the 
observation point are considered to be parallel. Furthermore, all path lengths are nearly the 
same, so there are no significant differences in signal weakening during propagation due to 
the differences in path lengths. 
The 0-th element of the array located at the point of origin is set as the reference element and 
the phase of the excitation signal supplying it is set to a0 = 0. In Fig.1 it can be seen that the   
i-th element of the array is spatially shifted with respect to the reference element for θcosid  
and its excitation is phase shifted for ai, which gives the total phase shift for the i-th element 
di as 
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where λ  is the wavelength, f is the frequency and c is the propagation velocity. 
The array factor F can be calculated as  
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Since the possible application of these results will be to loudspeaker sound columns, a 
uniform distribution of amplitudes is desired and will be discussed here. Therefore, all the 
excitation amplitudes Ai are set to Ai = 1, while the generality is maintained. Furthermore, the 
radiating elements are omnidirectional sources, so their radiation patterns have no influence 
on the final radiation pattern of the array; in other words, the final radiation pattern of the 
array is equal to the array factor F. Finally, only the absolute value of the array factor is of 
interest here, while the phase value is relevant only when several arrays are joined together. 
With these simplifications introduced, the absolute value of the array factor |F| can be 
calculated as: 
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From Eq. 1 it can be seen that there are two components responsible for the phase shift of a 
certain element in the array. The first one is the spatial component, dependent on the spacing 
of elements and the frequency on which the array operates. Unfortunately, there is not much 
that can be done with this component once the array is assembled. The second component is 
the electrical component, dependent on the phase distribution of excitation signals. This 
leaves lots of room for manipulating the radiation pattern of the array. 
 
 
2. THEORY 
 
In most discussions about basic theory of linear arrays, only the linear phase distribution is 
taken into account, meaning that the electrical phase shift of the i-th element of the array is 
equal to ai = ki, where i = 0, 1,…, N-1, N and k is the coefficient measured in radians or 
degrees. This approach allows only elementary beam steering. Here a few steps further are 
taken by adding non- linear components into the phase distribution function. 
The phase distribution function is assumed to be the sum of polynomials of the following 
basic form: 
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where kj is the coefficient of a given polynomial measured in radians or degrees, j is the 
degree of the polynomial ranging from 1 to n, where n is the predetermined highest degree of 
interest, and i is the argument which refers to the position of a given element in the array, 
ranging from 0 to N. All the polynomial functions defined in this manner are symmetrical 
with respect to the point of symmetry iS = 0, at which they take the value Pj(iS=0) = 0, i.e. the 
point of symmetry is the point of origin of the coordinate system, as shown in Fig. 2.  
 

 
 

Fig. 2. Basic form polynomials 
 

Since the polynomial functions are desired to be symmetrical to the centre of the array and 
argument i ranges from 0 to N, it is required to shift the point of symmetry to iS = N/2. 
Furthermore, all polynomials are required to take the value 0 at i = 0 in order to fulfil the 
requirement that the electrical phase shift for the reference element remains a0 = 0, as 
demanded in the introduction. To meet these conditions, the polynomial functions were 
modified to shifted polynomial functions of the following form: 
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Shifted polynomial functions are shown in Fig. 3. At the point of symmetry iS = N/2, shifted 
polynomials take the value  
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the sign being dependent on the sign of the coefficient kj and the degree of the polynomial. 
Due to the odd symmetry of odd degree shifted polynomials and the even symmetry of even 
degree shifted polynomials, their values for the final element of the array are 
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as intended. 



 
 

Fig. 3. Shifted polynomials 
 
Although the coefficients kj can be chosen independently of each other, thus determining the 
influence of a given polynomial in the phase distribution function, in Fig. 3 the special case is 
shown where all shifted polynomials take the same value at the point of symmetry iS = N/2. 
That way the influences of all the shifted polynomials to the phase distribution function are 
maintained in the same order of magnitude. In order to achieve this, the value of a certain 
coefficient kj is given, and the values of other coefficients km can be calculated from the 
following relation: 
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Finally, the phase distribution function a(i) is the sum of shifted polynomials: 
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For a given element of the array, the value of the phase distribution function becomes a(i) = ai 
and is entered into Eq. 1 for calculation of phase shift of a certain element of the array and, 
ultimately, for calculation of the array factor. 
 
 
3. RESULTS 
 
After devising the polynomial phase distribution theory, actual simulations were made for the 
array consisting of N+1 = 8 elements, since the loudspeaker sound column, which will be 
built in the future, will most likely be comprised of 8 drivers, due to practical reasons. The 
spacing of elements was set to a real value of d = 0.085 m and the test frequency was chosen 
to be f = 2 000 Hz, at which the ratio λd  is equal to 0.5. Since it was desired to examine 
separately the influence of each polynomial, up to the sixth degree, on the radiation pattern, a 
group of single-polynomial phase distribution functions shown in Fig. 4 was created. The 
resulting radiation patterns for each phase distribution function are shown in Figs. 6 to 11. In 
Fig. 5 the reference radiation pattern is shown, where all the coefficients kj have the value of 
zero.  



 

       
 
Fig. 4. Single-polynomial phase distribution functions         Fig. 5. Radiation pattern, kj = 0 
 
 

                                                      
 
          Fig. 6. Radiation pattern, k1 = 90°                        Fig. 7. Radiation pattern, k2 = -13° 
 
 

                                
 
          Fig. 8. Radiation pattern, k3 = 4°                           Fig. 9. Radiation pattern, k4 = -1°  



    

                                
 
        Fig. 10. Radiation pattern, k5 = 0.3°                      Fig. 11. Radiation pattern, k6 = -0.28°  
 
As shown in Figs. 6, 8 and 10, the use of odd degree polynomials in the phase distribution 
function is required to achieve beam steering. Unfortunately, none of the odd degree 
polynomials, except for the first degree, i.e. the linear one, is capable of providing the desired 
beam steering without significant emphasizing of side lobes, which is not desirable.  
Even degree polynomials in the phase distribution function are directly responsible for 
widening the main lobe, i.e. increasing the coverage angle, as shown in Figs 7, 9 and 11. The 
use of any of these polynomials widens the main lobe significantly, but the absolute value of 
the array factor in the direction perpendicular to the array is reduced to almost half of its 
original value, so corrections of excitation amplitudes are required. Again, the lowest even 
degree polynomial has proven to be the best one, providing the widest main lobe possible 
while maintaining the side lobes in reasonable limits. Furthermore, if the coefficient k2 is 
chosen carefully, the first side lobes can be incorporated into the main lobe, as shown in    
Fig. 7.  
In Fig. 12 several multi-polynomial phase distribution functions are shown, and the 
corresponding radiation patterns are shown in Figs. 13, 14 and 15.  
 

       
 
Fig. 12. Multi-polynomial phase distribution functions      Fig. 13. Radiation pattern, k1 = 90°, 
          k2 = -13° 



 

                                
 
        Fig. 14. Radiation pattern, k2 = -13°,                       Fig. 15. Radiation pattern, k4 = -1°, 
                                k3 = 3°                                                              k5 = 0,3°, k6 = -0.1°    
 
 
4. CONCLUSION 
 
In many cases, the simplest solution is proved to be the best one. As shown in the results of 
the simulations, linear phase distribution is the most desirable for beam steering, while higher 
odd degree phase distributions are not suitable for the task. As for coverage angle control, 
second degree, parabolic phase distribution will provide best results. Naturally, the 
combination of first and second degree polynomial in the phase distribution function will 
ensure control over both beam steering and coverage angle simultaneously, as shown in     
Fig. 13. While beam steering is required at all frequencies of interest, coverage angle control 
shall become more important as the frequency, i.e. the ratio λd  rises and the main lobe 
inherently becomes narrower.  
The goal of this study was to find a possible solution for managing the radiation pattern of a 
linear array, but the real benefit is the possibility of simulating any phase distribution function 
which can be approximated with a sum of polynomials.  
The study itself was conducted on a single frequency, so the next step will be to determine the 
polynomial coefficients as functions of frequency kj(f) in order to provide constant direction 
of main radiation over the whole frequency range of interest, while maintaining constant or 
close-to-constant coverage angle. 
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