Pregled bibliografske jedinice broj: 141678
Some new generalizations of the Kotel'nikov - Shannon formula for stochastic signals
Some new generalizations of the Kotel'nikov - Shannon formula for stochastic signals // Probability Theory and Mathematical Statistics Conference Dedicated to 100th Annyversary of A.N.Kolmogorov
Tbilisi, Gruzija; Borjomi, Gruzija, 2003. (pozvano predavanje, međunarodna recenzija, neobjavljeni rad, znanstveni)
CROSBI ID: 141678 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Some new generalizations of the Kotel'nikov - Shannon formula for stochastic signals
Autori
Piranashvili, Zurab ; Poganj, Tibor, K.
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
Probability Theory and Mathematical Statistics Conference Dedicated to 100th Annyversary of A.N.Kolmogorov
Mjesto i datum
Tbilisi, Gruzija; Borjomi, Gruzija, 21.09.2003. - 27.09.2003
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Weierstrass $\sigma$ - function; Hayman's constants; circular truncation error upper bound; Kotel'nikov - Shannon sampling formula; weighted derivative of $L^\alpha$-processes; Piranashvili $\alpha$-processes
Sažetak
Regular and irregular derivative sampling formula of Whittaker type is developed for $L^\alpha(\Omega, \mathfrak F, \mathsf P)$ - valued stochastic processes, $\alpha \in [0, 2]$, such that has spectral representation with Leont'ev $[0, \pi q/2)$[ type kernal function. Weighted $L_2$ and almost sure sense derivatives are reconstructed and circular truncation error upper bounds are presented such that are by Pogany estimates of Weierstrass $\sigma$ - function realized.
Izvorni jezik
Engleski
Znanstvena područja
Matematika