Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 13761

Machine learning approach identifies Baldwin effect during peptide immunomodulation in optic neuritis and multiple sclerosis


Štambuk, Nikola; Brinar, Vesna; Brzović, Zdravko; Mašić, Nikola; Štambuk, Vjera; Mažuran, Renata; Svoboda Beusan, Ivna; Rabatić, Sabina; Marotti, Tanja; Šverko, Višnja et al.
Machine learning approach identifies Baldwin effect during peptide immunomodulation in optic neuritis and multiple sclerosis // Ocular Immunology and Inflamation, 6 (Suppl.) / Kijlstra, A. (ur.).
Amsterdam: Aeolus Press, 1998. (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 13761 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Machine learning approach identifies Baldwin effect during peptide immunomodulation in optic neuritis and multiple sclerosis

Autori
Štambuk, Nikola ; Brinar, Vesna ; Brzović, Zdravko ; Mašić, Nikola ; Štambuk, Vjera ; Mažuran, Renata ; Svoboda Beusan, Ivna ; Rabatić, Sabina ; Marotti, Tanja ; Šverko, Višnja ; Karaman, Ksenija ; Pokrić, Biserka

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Ocular Immunology and Inflamation, 6 (Suppl.) / Kijlstra, A. - Amsterdam : Aeolus Press, 1998

Skup
First Combined International Symposium on Ocular Immunology and Inflammation

Mjesto i datum
Amsterdam, Nizozemska, 27.06.1998. - 01.07.1998

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
machine learning; Baldwin effect; peptide; immunomodulation; optic neutitis; multiple sclerosis; decision tree

Sažetak
Empirical observations showed that standard statistical approach is not an appropriate tool for the determination of prognostic parameters during peptide therapy of immune-mediated diseases. We applied the alternative analysis based on the non-lonear machine learning approach with C4.5 decision tree classifier. C4.5 decision tree has been tested on the model of peptid-M (Lupex) therapy in optic neuritis/multiple sclerosis. The Baldwin effect has been observed through B and T cell population switching and selection. The accuracy of the procedure with the respect to therapy was 92-100% for small samples. The model of non-linear prediction provides useful alternative to the standard statistical approach, enables the extraction of few relevant parameters or their mutual relationships and ensures accurate prediction of the therapeutic procedures.

Izvorni jezik
Engleski

Znanstvena područja
Javno zdravstvo i zdravstvena zaštita, Farmacija



POVEZANOST RADA


Ustanove:
Imunološki zavod d.d.,
Institut "Ruđer Bošković", Zagreb


Citiraj ovu publikaciju:

Štambuk, Nikola; Brinar, Vesna; Brzović, Zdravko; Mašić, Nikola; Štambuk, Vjera; Mažuran, Renata; Svoboda Beusan, Ivna; Rabatić, Sabina; Marotti, Tanja; Šverko, Višnja et al.
Machine learning approach identifies Baldwin effect during peptide immunomodulation in optic neuritis and multiple sclerosis // Ocular Immunology and Inflamation, 6 (Suppl.) / Kijlstra, A. (ur.).
Amsterdam: Aeolus Press, 1998. (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Štambuk, N., Brinar, V., Brzović, Z., Mašić, N., Štambuk, V., Mažuran, R., Svoboda Beusan, I., Rabatić, S., Marotti, T. & Šverko, V. (1998) Machine learning approach identifies Baldwin effect during peptide immunomodulation in optic neuritis and multiple sclerosis. U: Kijlstra, A. (ur.)Ocular Immunology and Inflamation, 6 (Suppl.).
@article{article, author = {\v{S}tambuk, Nikola and Brinar, Vesna and Brzovi\'{c}, Zdravko and Ma\v{s}i\'{c}, Nikola and \v{S}tambuk, Vjera and Ma\v{z}uran, Renata and Svoboda Beusan, Ivna and Rabati\'{c}, Sabina and Marotti, Tanja and \v{S}verko, Vi\v{s}nja and Karaman, Ksenija and Pokri\'{c}, Biserka}, editor = {Kijlstra, A.}, year = {1998}, pages = {S15}, keywords = {machine learning, Baldwin effect, peptide, immunomodulation, optic neutitis, multiple sclerosis, decision tree}, title = {Machine learning approach identifies Baldwin effect during peptide immunomodulation in optic neuritis and multiple sclerosis}, keyword = {machine learning, Baldwin effect, peptide, immunomodulation, optic neutitis, multiple sclerosis, decision tree}, publisher = {Aeolus Press}, publisherplace = {Amsterdam, Nizozemska} }
@article{article, author = {\v{S}tambuk, Nikola and Brinar, Vesna and Brzovi\'{c}, Zdravko and Ma\v{s}i\'{c}, Nikola and \v{S}tambuk, Vjera and Ma\v{z}uran, Renata and Svoboda Beusan, Ivna and Rabati\'{c}, Sabina and Marotti, Tanja and \v{S}verko, Vi\v{s}nja and Karaman, Ksenija and Pokri\'{c}, Biserka}, editor = {Kijlstra, A.}, year = {1998}, pages = {S15}, keywords = {machine learning, Baldwin effect, peptide, immunomodulation, optic neutitis, multiple sclerosis, decision tree}, title = {Machine learning approach identifies Baldwin effect during peptide immunomodulation in optic neuritis and multiple sclerosis}, keyword = {machine learning, Baldwin effect, peptide, immunomodulation, optic neutitis, multiple sclerosis, decision tree}, publisher = {Aeolus Press}, publisherplace = {Amsterdam, Nizozemska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font