Pregled bibliografske jedinice broj: 13761
Machine learning approach identifies Baldwin effect during peptide immunomodulation in optic neuritis and multiple sclerosis
Machine learning approach identifies Baldwin effect during peptide immunomodulation in optic neuritis and multiple sclerosis // Ocular Immunology and Inflamation, 6 (Suppl.) / Kijlstra, A. (ur.).
Amsterdam: Aeolus Press, 1998. (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 13761 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine learning approach identifies Baldwin effect during peptide immunomodulation in optic neuritis and multiple sclerosis
Autori
Štambuk, Nikola ; Brinar, Vesna ; Brzović, Zdravko ; Mašić, Nikola ; Štambuk, Vjera ; Mažuran, Renata ; Svoboda Beusan, Ivna ; Rabatić, Sabina ; Marotti, Tanja ; Šverko, Višnja ; Karaman, Ksenija ; Pokrić, Biserka
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Ocular Immunology and Inflamation, 6 (Suppl.)
/ Kijlstra, A. - Amsterdam : Aeolus Press, 1998
Skup
First Combined International Symposium on Ocular Immunology and Inflammation
Mjesto i datum
Amsterdam, Nizozemska, 27.06.1998. - 01.07.1998
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
machine learning; Baldwin effect; peptide; immunomodulation; optic neutitis; multiple sclerosis; decision tree
Sažetak
Empirical observations showed that standard statistical approach is not an appropriate tool for the determination of prognostic parameters during peptide therapy of immune-mediated diseases. We applied the alternative analysis based on the non-lonear machine learning approach with C4.5 decision tree classifier. C4.5 decision tree has been tested on the model of peptid-M (Lupex) therapy in optic neuritis/multiple sclerosis. The Baldwin effect has been observed through B and T cell population switching and selection. The accuracy of the procedure with the respect to therapy was 92-100% for small samples. The model of non-linear prediction provides useful alternative to the standard statistical approach, enables the extraction of few relevant parameters or their mutual relationships and ensures accurate prediction of the therapeutic procedures.
Izvorni jezik
Engleski
Znanstvena područja
Javno zdravstvo i zdravstvena zaštita, Farmacija
POVEZANOST RADA
Ustanove:
Imunološki zavod d.d.,
Institut "Ruđer Bošković", Zagreb
Profili:
Sabina Rabatić
(autor)
Biserka Pokrić
(autor)
Tatjana Marotti
(autor)
Vesna Brinar
(autor)
Ana-Višnja Šverko
(autor)
Nikola Štambuk
(autor)
Nikola Mašić
(autor)
Ivna Svoboda-Beusan
(autor)
Zdravko Brzović
(autor)
Ksenija Karaman
(autor)
Vjera Štambuk
(autor)
Renata Mažuran
(autor)