; TeX output 2003.09.10:1727iӍ:-iӍ|-K`y 3 cmr10POLeYA-REDFIELDfTHEOREMJakVLADIMIRޟ;jfCEPULI7x;jCIn!troMductionOur4aaimistopro!ve4aatheoremofG.POLeYA4Econcerning4aarelativ!elywideclassofcombina- torialproblems.Hegotthisresultin1937.GEOR!GEPOLeYA(1887-1985)w!asanAmericanmathematicianofh!ungarianorigin.AnothermathematicianJ.H.REDFIELDprovedaspMecialcasefofthesametheoremteny!earsbMefore,in1927.JaTheftheoremisdealingwithproblemsoffollo!wingkind:Ho!wTmanycolouringsofacubMethereexist,ifweapplytoitssurfacesblack,greenand bluefcolour.Weeconsider,%ofcourse,t!wocolouringswhic!hturnbyrotationoneintoanotherasthesamecolouring.Feorfexample(B-forblue,G-forgreen):mQ|32fdPe|32fdPQ|32fdPe|32fdPQJPfeeJPfeJPfeJPfeQ|O line10[|Q|[|||||y|': 3 cmti10(G)}|Gy|G|(G)U|(B)|B|32fdP-|32fdP|32fdP-|32fdPJPfe-JPfeiJPfe}JPfe|#||#|i|s|i|s|A|(B)E|BA|GO|(G)|(G)q|GJapresen!tfthesamecoloring.RotationsLofacubMeconstituteagroup.Th!usforsolvingsuchproblemsthegrouptheoryisin!volvedandweshouldbMeginwithsomebasicresultsconcerningstructureandpropertiesoff nitegroups.11*iӍ:-iӍFNq cmbx12Chapter 17ǍNH cmbx12Finite T{Groups;Ja$"V 3 cmbx10De nitionf1 b> 3 cmmi10:1MjACgrpoupK(G;1!", 3 cmsy10)isanonempt!ysetGwithabinaryopMeration :G0G 7!G (thatfis:8a;1b 2Gf9!c2Ganb =c)suc!hthat:Ja( `)f8a;1b;c 2G;yan(bc) =(anb)c(theassoMciativ!elaw).( )f9e 2G;y8a2G;ena =ane =a;Lefiscalledneutrpalelemen!tofG.( )f8a 2G9aK cmsy802G;ya0=%na=aa0=e;La0tisfcalledtheinverseelemen!tofa.Iffmoreo!ver:(j)8a;1b 2G;yanb =bna,Giscalledabpelianorcommutativegroup.Examplef1:1Fɹ(! 3 msbm10Z;1+),fZbMeingthesetofin!tegers,isanabeliangroup:Z =f:1::;13;2;1;0;11;2;3;:::g;fa;b 2Z)an+b 2Z.( `)fan+(b+c) =(an+b)+c;( )f90 2Z;y0n+a =an+0 =a( )f8a 2Z;y9(a)2Z;(a)n+a =an+(a) =0(j)f8a;1b;ybn+a =an+b.Examplef1:2F(f1;11g;)9isanabMeliangroup:Qa;1bk2f1;1g)axbk2f1;1g.VIt9iseasytoc!heckftheconditions( `)n(j).Examplef1:3FN(The9Wmainexample!)LetSbMeasetandɖu 3 cmex10PH(S) =ff8c:S9!SjfmisfabijectionHgg7(Bijection:1 $1fmappingthatisu.͹(1)Sf8c= S ͹(2)x 6=yo:)xf8c6=ydf|K).Thenf(ɖP (S);1)isagroupforcompMositionofmappingsasbinaryoperationonit.Feorf;1g23NɖP?(S);x3N2S`\w!ede ne:x(f/gd)=(xf-)g,xf솹bMeingtheimageofxunderactionoff-.JaThefgroupɖP5W(S)iscalledthesymmetricgrouponS.Itisindeedagroup:Vef;1go:2 ɖP(S) :u.A(1)fSf8c=S9=Sgo:)S(fngd)=(Sf-)go:=Sgo:=S A(2)fx6=yo:)xf8c6=ydf)(xf-)go:6=(ydf)go:)x(fngd)6=y(fng)Th!usffngo:2 ɖP(S).12iӍ:-iӍ-?t< lcircle10't;'fe?&?$;'fe?%|?fe |?fe |q|q|x|y?خ'خ;'fe?&? $ ;'fe?%|?fe |?fe |q|q|xf|ydf?<'<;'fe?&?n$n;'fe?%P|?fe P|?fe U|qU|qY|(xf-)gY|(ydf-)g|32fdfeT⟒ RfdfeHᜄfdfe!fdfefdfezhvfdfeT@hfdfeFfdfe!„fdfe1fdfexʄfdfeTޟzfdfeDSzfdfe!,fdfe҄fdfev=fdfeTܟ҄fdfeBfdfe!lzfdfeFfdfet ʄfdfeTڟ1fdfe@„fdfe!}fdfe bfdferfqfdfeT؟Afdfe> fdfe!fdfe Qfdfep2fdfeT֟=fdfejfdfe2fdfe!0fdfe҄fdfedfdfeTʟfdfe0fdfe!cfdfeErfdfeb'fdfeTȟ؄fdfe.ʄfdfe!fdfe,fdfe`fdfeTƟt6fdfe,Vfdfe!9fdfefdfe^fdfeTğbfdfe*fdfe!fdfefdfe\rfdfeTŸVfdfe(;Vfdfe!fdfefdfeZ釄fdfeTΖfdfe&τfdfe!2fdfe~fdfeXdvfdfeTJWfdfe$0bfdfe!fdfefdfeVfdfeT2fdfe"fdfe!fdfeGfdfeTffdfeTN'fdfe 5քfdfe!fdfe쟅fdfeR߄fdfeT6fdfefdfe!fdfeꟄʄfdfePxȄfdfeTafdfeKBfdfe!4fdfe蟄dfdfeN4fdfeT.fdfeRfdfe!Ơfdfe柃fdfeLfdfeTfdfeq|fdfe!~\fdfe䟃GfdfeJ3ZfdfeTfdfe fdfe!|fdfe⟂΄fdfeHfdfeTfdfe»fdfe!zfdfeÇЄfdfeFnfdfeT\*fdfeĻIfdfe!x7,fdfeŇޟ$fdfeDքfdfeTfdfeƻfdfe!vfdfeLJܟ˒fdfeBMfdfeT2fdfeȻAfdfe!tzfdfeɇڟv݄fdfe@fjfdfeTV!fdfeʻ Ffdfe!r6 fdfeˇ؟&Bfdfe>fdfeT*fdfe̻ ݄fdfe!p躄fdfe͇֟fdfe<fdfeTMfdfeλ҄fdfe!nfdfeχԟZfdfe:]fdfeTufdfeлgfdfe!lZbfdfeчҟM fdfe8?fdfeT2fdfeһ& fdfe!j]fdfeӇП ڄfdfe6҄fdfeTfdfeԻ眄fdfe!hfdfeՇΠfdfe4ĆfdfeT(fdfeֻfdfe!ffdfeׇ̠ fdfe2TfdfeTȄfdfeغxffdfe!dn.fdfeهʠd fdfe0Z<fdfeTPfdfeںFfdfe!b=fdfeۇȠ4Pfdfe.+>fdfeT"Vfdfeܺfdfe!`fdfe݇Ơfdfe,ZfdfeT~Dfdfe޺~Xfdfe!^~薄fdfe߇Ġ~fdfe*~ِfdfeT~Lfdfe~2fdfe!\~rfdfe ~fdfe(~fdfeT~fdfe~Rfdfe!Z~3fdfe~>fdfe&~sfdfeT~҄fdfe~[fdfe!X~fdfe凾~fdfe$~|fdfeT~x#fdfe~s~fdfe!V~ofdfe燼~jfdfe"~ffdfeT~bfdfe~^fdfe!T~[fdfe釺~Wfdfe ~T>fdfeT~Qfdfe~Nfdfe!R~K;fdfe뇸~Hfdfe~F fdfeT~Cfdfe~Afdfe!P~?~fdfe퇶~=fdfe~;fdfeT~:kfdfe~8fdfe!N~6fdfe~5ބfdfe~4fdfeT~4Hfdfe~3fdfe!L~3Zfdfe񇲠~3"fdfe~3fdfeT~~30fdfe~3vfdfe!J~3fdfe󇰠~4fdfe~5DfdfeT|~62fdfe~7Jfdfe!H~8fdfe~9fdfe~;fdfeTz~=Nfdfe~?8fdfe!F~ALfdfe~Cfdfe~EfdfeTx~Hfdfeޠ~K@fdfe!D~N&fdfe~Q6fdfe~TpfdfeTv~WԄfdfeܠ~[bfdfe!B~_fdfe~bfdfe~efdfeTt~j*fdfeڠ~nfdfe!@~sfdfe~wńfdfe ~|fdfeTr~fdfeؠ~ڄfdfe!>~5fdfe~fdfe ~ifdfeTp~Bfdfe֠~Efdfe!<~rfdfe~Ʉfdfe~JfdfeTn~fdfeԠ~ʄfdfe!:~Ʉfdfe~fdfe~EfdfeTl~„fdfeҠ~ifdfe!8~:fdfe~5fdfeZfdfeTjfdfeР"fdfe!6ńfdfe"fdfe+fdfeTh4fdfeΠ=fdfe !4F6fdfe OԄfdfe Yfdfe Tfcfdfe ̠mfdfe !2wfdfe `fdfe fdfe Tdfdfe ʠfdfe !0Ąfdfe fdfe rfdfeTbfdfeȠȄfdfe!.粄fdfeƄfdfefdfeT` lfdfeƟfdfe!,%fdfe2fdfe?fdfeT^LfdfeğZNfdfe!*g܄fdfeufdfevfdfeT\fdfeŸfdfe!(fdfefdfeVfdfeTZ4fdfefdfe!&fdferfdfefdfeTX%fdfe5fdfe!$EfdfeUfdfeffdfeTVvfdfe2fdfe!"fdfefdfe/fdfeTT˂fdfefdfe! fdfewfdfe쟂rfdfeTR$fdfe6fdfe!I_fdfe\fdfeꟂnτfdfe TPƄfdfe fdfe!!2fdfe!fdfe!蟂Ffdfe"TNfdfe"fdfe#! fdfe#ffdfe#柃2`fdfe$TLFfdfe$[fdfe%!pfdfe%~Ąfdfe%䟃fdfe&TJrfdfe&fdfe'!Ȅfdfe'|fdfe'⟄Ƅfdfe(THfdfe(4lfdfe)!Jfdfe)zafdfe)xfdfe*TFfdfe*fdfe+!Nfdfe+x܄fdfe+ޟ프fdfe,TDvfdfe,fdfe-!5fdfe-vNfdfe-ܟffdfe.TBVfdfe.4fdfe/!<fdfe/tnfdfe/ڟʄfdfe0T@Pfdfe0fdfe1! /Bfdfe1rIEfdfe1؟crfdfe2T>}Ʉfdfe2Jfdfe3! fdfe3pʄfdfe3֟Ʉfdfe4T<fdfe4Efdfe5!:„fdfe5nVifdfe5ԟr:fdfe6T:5fdfe6Zfdfe7!Ʃfdfe7l"fdfe7ҟńfdfe8T8fdfe89fdfe9!Vfdfe9jsfdfe9Пjfdfe:T6 fdfe:҄fdfe;!ńfdfe;hfdfe;Ο')fdfeT2Efdfe>fdfe? fdfe?d=Nfdfe?ʟ]8fdfe@T0}Lfdfe@fdfeA fdfeAbބfdfeAȟ@fdfeBT. &fdfeBA6fdfeC bpfdfeC`ԄfdfeCƟbfdfeDT,fdfeDfdfeE fdfeE^->fdfeEğOfdfeFT*r(fdfeF܄fdfeG fdfeG\„fdfeGŸfdfeHT(!PfdfeHDքfdfeI hfdfeIZ`fdfeIdfdfeJT&ԒfdfeJfdfeK lfdfeKXBfdfeKefdfeLT$fdfeL;fdfeM ԎfdfeMV fdfeMfdfeNT"EfdfeNk~fdfeO fdfeOTfdfeOkfdfePT fdfeP+ۄfdfeQ 쟐R҄fdfeQRyfdfeQ>fdfeRTȳfdfeRRfdfeS ꟑfdfeSP@fdfeSh+fdfeTTrfdfeTfdfeU 蟑~fdfeUN CfdfeU32fdfe|~32fdά-|zfng|32fdZά-|32fdZ-|32fdZ-|32fdZ-|S|SR|SJa( `)fFeoran!ymappingsfn(gh) =(fngd)h.Ja( )fLet12cmmi8S (: S97!SGs.th.C8x;yx1S=x.Then 8f"x(1Snf-) =(x1S)f8c=xf,fx(fn1S)=(xf)1S (=xf:Th!usf1Snf8c= f1S (=f-;f1S Hiscalledtheiden!tityfmappingonS.( )Eac!hbijectionff :8PS7!S0-hasitsinversemappingf-|{Ycmr8(1)_:8PS7!S,de nedby:ydf-(1)1W= x,xf8c=yvǍ?';'fe?&?Į$Į;'fe?%|?fe |?fe |q|x?';'fe?&?P$P;'fe?%2|?fe 2|?fe 7|q9|y|32fdfe4fdfeyЄfdfe_{fdfe?jfdfeJfdfeBfdfe㟸&fdfeOfdfea%5fdfeƟfdfeg@fdfe2cfdfew)GfdfeJ"fdfe럶JfdfeH{fdfe-BIfdfeΟ fdfeoDfdfe_fdfe_&fdfeR' fdfe/fdfeuzfdfe5fdfe֟HfdfeFwfdfeNfdfeѹ҄fdfeZnfdfe\8fdfefdfe=͐fdfe-ޟLfdfescifdfe .fdfe>fdfeDbfdfefdfeϤ^BfdfeE*܄fdfeZ柰fdfezfdfe(҄fdfe+ɟ_=fdfeqj-fdfe fdfeRfdfeBMfdfeffdfe͏5nfdfe0„fdfeXџ!fdferfdfesЄfdfe)CfdfeoU{fdfefdfe"fdfe@86fdfeٟXńfdfez*VfdfedfdfeVrfdfe]fdfesfdfe'FSfdfem@fdfe៫fdfefdfe>#qfdfeğhfdfee<fdfe„fdfeTfdfešHƄfdfe韪fdfe%fxfdfek+<}fdfeð̟rfdfemfdfe<hfdfeākfdfePmZfdfe D܄fdfeRHfdfeŘ3Ifdfeԟ2fdfe#uYfdfei}fdfeƮUfdfeX.fdfe9fdfe؄fdfe;vfdfe ܟfdfeP}ö́fdfeȖJfdfeۿ% fdfe!`fdfegofdfeɬ„fdfeCfdfe7䟦nfdfe}Kfdfe&'NfdfeǟDfdfeNhfdfe˔ fdfe٪ʄfdfeKyOfdfed쟥Wfdfe̪5fdfe.6fdfe5ϟfdfe{pfdfefdfefdfeLSp fdfeΑP:fdfeו00fdfe6dfdfebןQfdfeϨxfdfenfdfe3fdfey[vfdfeоX2fdfe:fdfeJ>ĄfdfeяߟfdfeՀRfdfe!źfdfe`Ÿ܄fdfeҦc<fdfepbfdfe1T?fdfewF8fdfeӼ矢>fdfebfdfeH)9fdfeԍʟ܄fdfek0fdfe Rfdfe^~#fdfeդNd2fdfeKfdfe/1fdfeu1fdfeֺҟfdfesfdfeFjfdfe׋DŽfdfeVʄfdfefdfe\q&fdfeآ9YfdfeڟC~fdfe-{,fdfes҄fdfeٸfdfe^"fdfeCWfdfeډnfdfeA fdfe⟟fdfeZfdfe۠$mRfdfeşYfdfe+fEfdfeq2cfdfeܶʄfdfeI fdfeA꟞fdfe݇фfdfe,2fdfe͟‚fdfeXn`fdfeޞ|fdfe㰟fdfe)Q|#fdfenkfdfeߴZƄfdfe4J҄fdfe?՟:efdfev*fdfefdfe fdfeVYfdfebfdfeᛟ*fdfe'.fdfe0ߟ5 fdfevWfdfe!xfdfeŸfdfeGcfdfeኄfdfeҥ܄fdfeF'fdfe]矦Jńfdfem҄fdfe)fdfe.ʟ4fdfetkۋfdfe fdfe%hfdfeENIfdfepAfdfeАBfdfe1fdfe[ҟᔄfdfesPfdfe.fdfe,UfdferV},fdfefdferfdfeC9fdfeڟfdfe{DdfdfemfdfeYfdfe^fdfeքfdfe *fdfe pA<fdfe ⟪efdfe 8fdfe!A$fdfe!şfdfe!fBfdfe"=fdfe"Whffdfe"Ifdfe"꟫fdfe#(fdfe#n,fdfe#͟Efdfe#nsfdfe$?Kfdfe$΄fdfe$Q܄fdfe%*ބfdfe%UXifdfe%42fdfe%՟fdfe&&v8fdfe&lwfdfe&C:fdfe&Ysfdfe'<8fdfe'ufdfe'<2fdfe( ݟ5fdfe(S~f(fdfe(cfdfe(fdfe)$afdfe)j-fdfe)^zfdfe)Dfdfe*:埰fdfe*؄fdfe*'*Dfdfe+ ȟ^fdfe+Qifdfe+ Ƙfdfe+ܫfdfe,"L-fdfe,gퟲcUfdfe,vfdfe,/ͨfdfe-8ПFfdfe-~q8fdfe-nfdfe. Bfdfe.OTڄfdfe.fdfe.ږHfdfe/ 7~fdfe/e؟^fdfe/y.fdfe/'fdfe06^gfdfe0|\҄fdfe0Ϝfdfe1 fdfe1M?Ä́fdfe1|6fdfe1؁fdfe2"fdfe2cß)#fdfe2dbfdfe2Hfdfe34Dfdfe3zGifdfe3蟸Nfdfe4fdfe4K*|fdfe4˟fdfe4l?fdfe5 zÄfdfe5afdfe5O҄fdfe532fdfe|32fdά-|f|32fdfe4pfdfeyfdfe_hfdfe&fdfeJcQfdfeBdfdfe㟻>fdfe҄fdfea%R/fdfeƟNfdfeg$fdfe2Ƅfdfew=fdfeJwBfdfe럽fdfeH„fdfe-$fdfeΟ]Ffdfeo fdfe_΄fdfe>fdfeR?Zfdfe/wMfdfeufdfe5`fdfe֟~fdfeFwTwfdfefdfeѹfdfeZfdfe\-fdfecrfdfe=Ԅfdfe-ޟfdfesfdfe 7„fdfel&fdfeDb pfdfeUfdfeϤ"fdfeE;fdfeZn؄fdfeáfdfe(Ԓfdfe+ɟ'fdfeqj9Pfdfe khfdfeĝfdfeBMέfdfe؄fdfe͏0fdfe0afdfeXџŒCfdfer¦fdfefdfe)"zfdfeoUQfdfeƁRfdfeưBfdfe@8.fdfeٟ fdfez<fdfejfdfeVǗfdfe]Ŧfdfeڄfdfe' fdfem@LƄfdfeyfdfeȥfdfe>#fdfeğfdfee)jfdfeTfdfeTfdfešHɪfdfedfdfe%fdfek+)fdfeð̟Sfdfem}nfdfe<ʦfdfeāfdfeP fdfe !fdfeRJfdfeŘ3rfdfeԟ˚2fdfe#u fdfeiLfdfeƮfdfeX7jfdfe9^Ifdfēfdfe;̪fdfe ܟвfdfeP}fdfeȖ܄fdfeۿADfdfe!`fnfdfeg͊fdfeɬͯfdfeCӪfdfe7ڄfdfe}cfdfe&?fdfeǟb fdfeNh΅Vfdfe˔ Χfdfe٪ʚfdfeKfdfedfdfe̪0fdfe.R.fdfe5ϟsfdfe{pϔ~fdfeϵfdfe҄fdfeLSYfdfeΑ*fdfeו64fdfe6VfdfebןufdfeϨxДbfdfeвfdfe3Ȅfdfey[݄fdfeо2fdfe+ȄfdfeJ>IfdfeяߟffdfeՀфfdfe!Ѡfdfe`ŸѽfdfeҦc(fdfefdfe1%fdfewF-fdfeӼI&fdfedfdfeH)+fdfeԍʟҙfdfekҴ4fdfe fdfe^AfdfeդN2fdfeRfdfe/4Ƅfdfeu1Mgfdfeֺҟf^fdfes~fdfeFӖfdfe׋ӮfdfeVƚfdfeݾfdfe\>fdfeآ9 fdfeڟ"fdfe-{9fdfesOfdfeٸeڄfdfe^{BfdfeCԑ fdfeډԥfdfeAԻDfdfeϮfdfeZfdfe۠$fdfeş fdfe+f Ԅfdfeq4fdfeܶGfdfeIZHfdfeAmdfdfe݇fdfe,Ւ2fdfe͟գfdfeXnնfdfeޞfdfe㰟ڄfdfe)QAfdfenfdfeߴ fdfe4fdfe?՟+fdfev;tfdfeKdfdfeZZfdfeVYḯfdfeyfdfeᛟև:fdfe'<֕fdfelݟ֣fdfe~ֱfdfeֿ fdfe=ބfdfeaٙfdfeڄfdfefdfeTDڄfdfe fdfe߆ބfdfe%'#fdfejȟ.fdfei:rfdfe Dfdfe;PfdfeLZfdfedfdfe nfdfeR/x+fdfeПׁ.fdfeq׊Ƅfdfe#ה fdfehלefdfeTץBfdfe׭fdfe9׵hfdfe7׼fdfe؟Ēfdfe yZfdfePfdfeꕻ fdfe\fdfe 杄fdfef(fdfe?Vfdfebfdfe7fdfe}"fdfeßԄfdfed fdfeNfdfe퓦(fdfeGbfdfe^fdfed/fdfe*!fdfe˟$fdfe5l'fdfe{ (Մfdfe+ZfdfeO,fdfeK.fdfe𑑟/fdfe21fdfeӟ2cfdfebt2zfdfe3Jfdfe2fdfe3W35fdfex2Nfdfe򾙟2$fdfe:0fdfeI۟0fdfe|.2fdfe-fdfe*fdfe`_) fdfe'*fdfe롟$fdfe1B!fdfev fdfe2fdfe%fdfeGƟfdfegfdfe Jfdfe,fdfe^J܄fdfeNfdfe錟rfdfe/-gfdfetΟ fdfeo愄fdfeߪfdfeE٥fdfeRLfdfeʄfdfefdfe\5׼fdfe֟׵fdfew׭ fdfe-ץffdferלQfdfeZהfdfe׊fdfeCׁ҄fdfe=wfdfeޟnfdfecfdfeZ ZNfdfePbfdfebEfdfe+:fdfep.ڄfdfeE#fdfefdfeA Cfdfe(vfdfeɟfdfejJfdfeX fdfeRfdfeMֿHfdfe(ֲ0fdfen֣fdfe0֖fdfeџև fdfe?rxfdfeiqfdfeʴZfdfeUJ܄fdfeU;Єfdfe,fdfe8„fdfe&ٟ fdfelzfdfetfdfeزfdfe=]fdfeյfdfeȟդrfdfe@ՑfdfeSfdfelfdfe#Zfdfe$ğH fdfeje4 fdfe!fdfe fdfe;H.fdfe3fdfeƊFfdfe +Ժ̄fdfe Q̟Ԧbfdfe mԐifdfe {fdfe "f]fdfe hPOfdfe :fdfe "΄fdfe 93 fdfe ~ԟfdfe u^fdfe *fdfe Oӯfdfe XӖ^fdfe ~Ȅfdfe ffdfe f;Mfdfe ܟ52fdfe }Bfdfe7tfdfe|fdfe`κfdfeҳ̄fdfeMҚfdfeC~fdfedRfdfeIτfdfed&-fdfeǟfdfehfdfe5 }fdfezѽTfdfeKѡZfdfeуfdfeKg;fdfe.Ifdfeϟ, fdfepfdfeb fdfeZfdfeSвfdfe2Дʄfdfextfdfe6V>fdfeן5܄fdfeIxfdfeՄfdfeԺ2fdfe[ϴ҄fdfe_ϔfdfetTfdfe>R6fdfe0ߟ1[fdfevfdfe!ffdfeŸJfdfeGcΨufdfe΄ڄfdfeҥbfdfeF>nfdfe]fdfefdfe)Ӻfdfe.ʟͰ0fdfetk͊لfdfe f҄fdfe@fdfeENxfdfe#fdfeА"fdfe1̪Nfdfe[ҟ̄Єfdfes_fdfe7fdfe,IfdferV8fdfe‚fdfe˙fdfeC9rfdfeڟIfdfe{"fdferfdfeYEfdfe^ʧڄfdfe}fdfe *Tfdfe pA)ۄfdfe vfdfe ,fdfe!A$ɫJfdfe!şfdfe!fU"fdfe"(ڄfdfe"Wfdfe"Ifdfe"ȥބfdfe#(zGfdfe#n,L„fdfe#͟ fdfe#nfdfe$?fdfe$Ǘfdfe$Qjfdfe%;fdfe%U fdfe%42fdfe%՟ưrfdfe&&vƂ,fdfe&lQfdfe&#*fdfe&Ylfdfe'<,fdfe'őfdfe'xfork>2.$Weepseethat;actsincycles:?Cx[!xd!xd2h!:1::~!xdt1.!xdtR.=xofsomelengtht,Ewhic!hweshalldenoteNb!y(x;1xd;:::l;xt1ٹ),-imageNofthelastelemen!tinparenthesesbMeingthe rstone.Infourexampleo:= (175)(26)(389)(4).JaTheorem21.1K Each*sppermutation2MɖPt( ),zUj jM=n*s-ofdegreenontheset ,zUcanberpepresentedinthecyclicform:,ro:= ( z1;1 z1d;:::l; z1dzkqAacmr61*1Xù)( z2; z2d;:::l; z2dzkq2*1Xù):::lŹ( zt; ztd;:::l; ztdzk;cmmi6t\p1); z1;1 z2;:::l; ztP2a ,&asaprpoductofcyclesoflengthskz1;kz2;:::l;kztʹ;kz1Q+kz2+:1::+?kztP=an.QHerpe the d-imageofthelastelementinepachparenthesesisthe rstone-( ziddk8:i,r1Z)o:= zi,lfor alFli.ThecyclesofO}cponstituteapartitionof .Prpoof: LӹLetv 2 .8Observ!ethesequence `;1 d; d2$;::: Sincev is nitethereexistaminimalksuc!hLthat `dk= dsϹ,FforLsomes0,Fthen `dk%d1= dsd1) dk61|r= ds1K,againstdtheminimalit!yofkX?.ThussG=0dand `dk =G ds  .Sodw!ecanwritetheabMovesequenceinthecyclicform:n( `;1 d;:::l; dk61d).If 22.@ isnotincludedinthecycleof `,qw!eproMceedinthesamewaye,qbuildingthecycleof :*( ;1 d; d2$;:::l; ds1K).Q+Thecy-clesof Sand ^aredisjoin!t:&otherwise `dt藹=: dr,forsomet4N5]z"6l7  27/ T3>4N1]z"6l5wmVuv= (1275)(3)(4)(6)(1275)346(1275): CEspMeciallye,Cif} #=1;12;:::ln,,w!e}write1 b=#(1). #Byourconvention,Callotherelementsarealsof xedb!yd.2)fThem!ultiplicationofpMermutationsrepresentedincyclicformisquitesimple.Iffo:= (:1:: Q5 ! g#:1::-)(:1:: c)1:::l;1%=(::: 95 O!M n:::5O)(::: c):::l;fthenn% =(:1:: Q5 ! :1::5O)(:1:: c)1:::FeorfexampleinSz7ʫ: (16)(2375)4n(251)(3746)=(134627)5.Namely:1 !6!3,fth!us1 !3,3 !7!4,fth!us3 !4,4 !4!6,fth!us4 !6,6 !1!2,fth!us6 !2,2 !3!7,fth!us2 !7,7 !5!1,fth!us7 !1.Sofw!egetthecycle(134627).Feorelement5notbMelongingtothiscycle,wehave5 !1!5,fth!us5 !5.15iӍ:-iӍ|-3)iThecyclesofapMerm!utationcanbewritteninan!yorderandeachcyclecanbMeginwith an!yfofitselements:forex.(251)(3764) =(3764)(251)=(7643)(125)=:1:: .Examplef1:6G͹Weejcanrepresen!ttherotationsofequilateraltriangleaspMermutationinthefollo!wingway:4eR=(1);1d=(123);d2=(132);a=(23);b=(13);c=(12).`No!wwecaneasilycompute:bǍ||||||T|T|T|T|T|ff<|A|1|B|2|C|3|"|"|"|"|"|"|y|a|b|b|b|b|b|b|y|bɻJAfe|y|cJadna =(123)n(23) =(13)2=bJaand =(23)n(123) =(12)3=canb =(23)n(13) =(132)=d2Infthefollo!wingweshallwriteGfor(G;1).Theorem21.2K Lpeta;1x;yo:2 G. vThen1)anx =anyo:) x=yd; 2)xna =yna)x=yPrpoof: v:1)fanx =anyo:) a0=%(ax)=a0=%(ayd)-s 5) ܹ(a0=%na)x =(a0na)y5䍑| o:)mex =eny5䍑Q o:)x =y:2)",xfya =y fya)(xa)a0=(y a)a0 5)ּx(aa09)=y (aa09)5䍑. ",) xe=y e5䍑$ )x=yTheorem21.3K Theneutrpalelemente,andtheinversea0#ofaareuniquelydetermined.!rPrpoof: S1)fane0= ae=aT.:h:25b)e0=e.Th!usfeisunique.I-2)fana00'= e=ana0T.:h:25 1)a00= a0)a0tisfunique.Theorem21.4K F)ora;1b 2Gtheepquationsanx =bandyna=bhavetheuniquesolutions inG. vx =a0=%nbandyo:=bna09."BPrpoof:p1)'a%x5=b)a0^%(ax)5=a0%b 5)(a0%a)x5䍑 5=Hex5䍑: 5=x5=a0^%b.aNo!w'indeed:a(a0b) =(aa09)b =eb =e.&2)h@yW2a=b)(ya)a0= y(aa09) =ye=yo:=ba09.Thesefsolutionsareuniqueb!yTh.2.16àiӍ:-iӍ|-Theorem21.5K Lpeta;1b 2G. vItis(a09)0=a;(anb)0= b0=%a09.NPrpoof: S1)fa0=%n(a09)05䍑. =ge5䍑  =a0a T.:h:25b)ι(a09)0= a o⍑2)(anb)x =ev 5)a0=%n[a(bx)] =a0ne=a0 5)ʍ"|ex6ּ͍zP`}|P`{ 3ּ(az0na)6Z(bnx) =a0 ) bnx=a0)b0=%(bx)=b0=%a0)(b0=%b)x=ex=x=b0=%a09:fNo!w,f(anb)(ab)0= e=(anb)(b0=%a09) T.:h:25b)ι(ab)0= b0=%a09.!Remarks:Ja1)BecauseofassoMciativ!elawaS^(bc) =(aS^b)c;theresultsofexpressionsinagroupdofnotdepMendonparen!theses,sowecandropthem.(\Feorgettheparentheses!"),e2),eInthefollo!wingweshallwritethegroupopMerationmultiplicativelye.oThatis,Mwede-note~thegroupopMerationb!y""orevendropthissign:a7bsca7bscab.~Inthiscasewedenotea0Ía1 \|;"e=1G %1,andcall1G Ήtheunit!yofG.Usingthisnotation,w!ewrite:aa1g#= a1 \|a=1;y(a1)1g#=a;y(ab)1=b1 \|a1;yax =b)x=a1 \|b;yda=b)yo:=ba1 \|:De nitionf1:3M Letfa 2G.Weede ne:a0ʫ:= 1;ya1:=a;yam k:=am1@a=aa1laP`|P` {zP` }m{mftimes$Ԧ.$Y_Theorem21.6K Lpetaz1;az2;1lazm k2 G. vThen:A򀷍rR1)Q(az1az251,azmĹ)1g#= a1Am /1Aae12 \|ae11 rR2)Qam:= (amĹ)1g#=(a1 \|)mrR3)Qm;1n 2Z(!am+n3=amanP;(am)n= amn(Prpoof:1)Weealreadykno!w:(az1az2)1g#= ae12 \|ae11;assume:(az1az251,azm1@)1= ae1m1q1#Nae12 \|ae11֍) (az1az251,azm1@azmĹ)1g#=((az1az251,azm1@)azmĹ)1g#=a1Am \|(az1az251,azm1@)1g#=a1Am \|ae1m1q1#Nae12ae11.2)fam= (amĹ)1g#=(aa1la) ,|P` L={zP` L=}ohm-XE1<;1);㍑;=GNaz1 \|az1 /1Aaz1P`GN|P`{zP`} Ke|Tm9=(a1 \|)m. 3)fOnepro!vesfitb!yinduction.De nitionf1:4M Letf 6=A;1BKG,thenAnBK:= fabja2A;1b2Bg.ItisABKG.By\A1fw!edenotethesetA1g#:= fa1 \|ja2Ag._Feor\A=fag,kwe\denoteABK= fagBaB=fabjb 2Bg.Similarlye,fforBK= fbg,AB= AfbgAb.Onefcaneasilyseethat:1)fA(BCȁ) =fa(bc)ja2A;1b2B;1c2Cȁg=f(ab)cja2A;b2B;c2Cȁg=(AB)C2)fOb!viouslye,An1 =fan1ja 2Ag=f1naja 2Ag=1nA.De nitionf1:5N_ Let{fHQgmG;N6=H.\H_'isasubpgroupofG,HQgmG,ifH_'isagroupwithrespMecttothesamegroupoperation(restrictedtoH),Ⱦthatis,if:1)a;1b8q2H2=,)a=b8q2H;2)saһ2H|=,)a1/72H.FTheconditions `)and )aresatis ed,0,nthenFalreadyan3a1r=asHa1)an1ܹ=as1J,nagainstFtheminimalit!yofn.6Thusan= a0ʫ=1.No!w,lfor7anyt-Y2Z,lt=nq`+|rM޹,0r{7̎ff32fd232fd232fd232fd232fd2HR\nKOHOHRnkOHRnKK9GHKi=fhkG'jh2HH;1k2Kȁg=[fHkjk2Kȁg. XNo!wbHkz1 =Hkz2 (,)Hkz1keX?12=Hh(,) 1 kz1keX?12b2Hh(,)kz1keX?12b2HA\ K((,)kz1ʫ2(H\ Kȁ)kz2ʫ(,)(H\ Kȁ)kz1ʫ=(H\ Kȁ)kz2.Henceyfrom,>Hkz1v6=>rHkz2(,)>r(Hgd\Kȁ)kz16=(Hgd\Kȁ)kz2.;Th!us,>thereyareasmanycosetsofHinfHK,ascosetsofHR\nKninK,thatis:jHKȁj :jHj=jKȁj:jHR\nKj=,)jHKj=jHjjKj=ڟ@p p jH\KjDe nitionf1:9NMLetiygY2OG;1x2G,>w!ede nexg $Ĺ:=gd1 xgd,>thebcponjugateofxunderg.'FeorStG,cw!e=de neSg }r=fsgjs2Sg,ctheconjugateofS=underg.FeorHG,cw!esaythatX@<;1Yy GfarpeconjugatedunderH,LXH #Yy(,) 9h2HH;ys:th:fXh L=Yn.BTheorem21.15QUkThecponjugation'zg U:G!G;?'zg:x7!xg;1g2G,isabijepctionandtherpelationHD,forHh G,isanequivalencerelation. vIt'sequivalenceclassesarecalFledH-cponjugateclasses.Prpoof:A)f1)x'zgߥ= yd'zg(,)gd1 xgo:=gd1ydgoT.:h:25o:=,)+xgo:=ygoT.:h:25o:=,)+x=yo:=,)'zg{disfinjectiv!e.2)yo:2 G=,)y=gd1 gdyg1go:= (gyg1)gߥ= g0g q=g02'zgߥ=,)G'zg=G;y'zg{disfsurjectiv!e.1)fand2)=,) 'zg{disbijection.B)X@<;1Y;Z( S1)X1= 11 \|X1=1X柹=X=,)XH #X2)X%"H bnY=,)I*9h;1Xh =h1 \|Xh=Y=,)Xh=hY=,)X%"=hYnh1=(h1 \|)1Yh1=Ynh-:q% cmsy61G=,) 9h1g#2HH;1Ynh-:1=X柹=,)YyH #X3)XH QY;1YSHZ=,) 9hz1;hz22HH;s:th:)qXhq1Q=Y;Ynhq2䔹=Z=,)Z=he12 \|(he11Xhz1)hz2=(hz1hz2)1 \|X(hz1hz2) =Xhq1*hq2Ϲ=,)9hz1hz2ʫ2HH;1Xhq1*hq2Ϲ=Z(=,)XH #ZByf1),2),3)therelationH isanequivdDalencerelation.De nitionf1:10S߹FeorfX G;yHhG,w!edenotebyCȁlHD(x) =fXh Ljh2HgthecponjugateclassofXwithrespecttoH,formorebrie ye,theH-conjugateclassofX.t10  iӍ:-iӍ|-Theorem21.16QUkLpetS9 G;x;1yo:2G. vThen(Sxy)y=Sxy g:JaPrpoof: v(Sxy)y= yd1 Sxyo:=yd1 (x1 \|Sx)y=(xyd)1 \|Sxy=Sxy De nitionf1:11S߹LetfNLetHY G;1S*G:ThesetNHD(S)=fh2HYjSh =SgŹiscalledthenormalizerofS9inH. TheksetCHD(S)%Z=fh2H j8s2ShshK=sgkiscalledthecpentralizerofS|inH.Theorem21.18QUkNHD(S)andCH(S)arpesubgroupsofH(andG). vMoreoverCHD(S)nENH(S):Prpoof:(1)fhz1;1hz2ʫ2 NHD(S)(,)Shq1 <ѹ=S9=Shq2 <ѹ=,)Shq1*hq2Mi=(Shq1 2*)hq2 ?=Shq2 <ѹ=S9=,)fhz1hz2ʫ2 NHD(S) T.:h:75=,)NH(S)G:(2)fhz1;1hz2ʫ2 CHD(S)=,)8s2SGshq1 ?=s=shq2=,)shq1*hq2׹=(shq1 )hq2=shq2=s=,)hz1hz2ʫ2 CHD(S) T.:h:75=,)CH(S)G:(3)fDenoteLCHD(S) C,;1NH(S)N:fOb!viouslyLCH(S)NH(S):fNo!w,letc 2C,;nf2N; s2S:ڹThen s(c-:n7)펹=sn-:1 cnu?=(sn-:1)cn[/=(sn-:1 cH)n =(sn-:1)n =s1 j=s;ڹandsocn2 Cnforfeac!hLc2Cy=,)Cȁn {xC=,)8nfCȁn {xC(T.:h:175Ź=)SC7mEnN:JaTheorem21.19QUkLpet[S9 G;1HhG:LpetCȁlHD(S)=fSh *jh2Hg[bpetheH-cponjugateclassofS. vThenumbperofdi erentconjugatesofS|equalstotheindexofNHD(S)inH,thatis:j CȁlHD(S)j=jHh:NH(S)j: rPrpoof: SCȁlHD(S) =fSh *jh2Hg;yShq1 <ѹ=Shq2 <(,)Shq1*hi@1#Ս2=Shq2*hi@1#Ս2=S1l==S9(,)hz1he122NmNHD(S)(,)hz1 q2NH(S)hz2 q(,)NH(S)hz1 q=NH(S)hz2:DTh!us,Shq1=NmShq2(,)NHD(S)hz1.=nNH(S)hz2;oandthereforeShq1 6=nShq2(,)nNHD(S)hz1.6=NHD(S)hz2:oWeeseethatthen!umbMerofH-conjugatesof S(equalsthen!umberofdi eren!tcosetsofNHD(S)in Hjǹ,Lthatis:nj CȁlHD(S)j=jHh:NH(S)j:t11 iӍ:-iӍ|-Remarks: (1)ŦIfS=efsg;thenNHD(S)=fh2H&jfsgh OV=fsgg=fh2Hjsh OV=sg=CHD(S)CHD(s):fSo,inthiscase:j CȁlH(s)j=jHh:CH(s)j:(2)jshp= s(,)h1 \|sh=s()sh=hs:jTh!usthecentralizerCHD(S)isthesetofelementsinH'comm!utingfwithallelementsofLS:(3)fNEnG (,)NG(N1)=fgo:2GjNg D=Ng=G(4))CG(G)o=fz_2Gj8gI2Ggdz =gdg=fz_2Gj8gI2Ggdz_=z{IggZȁ(G);)consistingofelemen!tsfinLGwhichcommutewithallotherselementsofLGiscalledthecpenterofG.JaInfthefollo!wing,LH'willalwaysbMeasubgroupofLG:De nitionf1:13T,ƹLetMH>}G.A7familyFofsubsetsofG,FP| ͹(G)=fXjXwuGnfgg,iscalledH-invariantif8X2F_,8h2H)Xh 2F. ThisisequivdDalen!twith:8X2F) CȁlHD(X)F_,fwhic!hmeansthatFŹconsistsoffullH-conjugateclasses.De nitionf1:14T$Let׫F bMeH-in!vdDariant.qAמsubset׫[F_]=\fXz1;1?;1XȮk#gF]is׫calleda>setofH-cponjugaterepresentativesforfF_,if:f1)8fX2 F9i; cXs `>HyXziK>andH"2)\ѣi6=j ) WsXzid6s HdXzjf :Ob!viouslye,fthereareasmanyrepresentativesin[F_]asH-conjugateclassesinFŹanddFŹ=k g [RɖF 퍑 i=1.CȁlHD(Xzidڹ)?:."lTheorem21.20QUk(Class^F)ormula)LpetF⽺beanH-invariantfamilyinG,and[F_] =fXz1;1Xz2;?;XȮk#gasetofH-cponjugaterepresentatives. vThen"wmrjFVj =Ohk X "㍑i=1jHh:NHD(Xzidڹ)j:$-Prpoof: vByfDef.14,F!= ɖFA *kH *i=1?/CȁlHD(Xzidڹ)IJ(ɖF -disjointunion).l) {jFVj =ɖPAkHi=1jCȁlHD(Xzidڹ)jT.:h:195 F=ҟɖPA'kH'i=17JjHh:NH(Xzidڹ)jJaCorollary21.21SጺConsidering$JGasunionofit'selementsGr=[JgI{2Gfgdg,2it$JisH-invariantfor'anyH &G. Lpetfxz1;1:::l;1xȮk#gbeH-conjugaterepresentativesforelementsofG.ThenbyTheporem??Vv& ()jGj =Ohk X "㍑i=1jCȁlHD(xzidڹ)j=Ohk X "㍑i=1jHh:CHD(xzidڹ)j:5IfHh= G,wehave:VtjGj =Ohk X "㍑i=1jCHD(xzidڹ)j=Ohk X "㍑i=1jG:CG(xzidڹ)j:t12 /֠iӍ:-iӍ|- Ifxzio2 Zȁ(G),thenClG(xzidڹ) =fxzigandso: vxzio2 Zȁ(G),CG(xzi)=G,jG:CG(xzi)j=1:Thus jGj =X i;G=CX.G7(x8:i,r)23jG:CG(xzidڹ)jn+1AX i;G>CX.G7(x8:i,r)1jG :CG(xzidڹ)j=ZmX i;x8:i,r2Z(G)+Nw1n+ X i;x8:i,r62Z(G)*jG :CG(xzidڹ)j;#thatis:yf()jGj =jZȁ(G)jn+ X i;x8:i,r62Z(G)*jG :CG(xzidڹ)j:*TۍTheorem21.22QUkLpetHH;1K( G. vThenHK G,HK=KȁH.JaPrpoof:=,):HKS!G)Hna=HRn1HKȁ,KS!=1nKHK)KȁHnaHK. -DBy&dTh.14jKȁHj =jHKȁj,andfth!us,bMecauseof niteness,KȁHh= HK.f(,Ϲ=:{HK(= KȁHh)HKpHK(=H(KȁH)K(=H(HKȁ)K(=(HH)(KȁK) =HK(T.:h:75+N)OHK(G.b~Theorem21.23QUkLpetNpE?:G.Then(G=dDN;1)isagroupforcosetsmultiplicationasgroupoper-ation.Prpoof:SinceVgz1Nڀgz2N+=gz1(N1gz2)N=gz1(gz2N1)N=gz1gz2N1N=gz1gz2N1,theVgroupopMerationisw!ellde nedl(indepMenden!tonchoiceofcosetsrepresentativesgz1;1gz2).fWeelhave:gdN+$1NLet (G;1G)and(HH;HD)bMegroups. A imapping'Z:G!H톹is źa1homo-morphism\frpomGintoH,Џif8gd02;1gd00 722G;(gd0@G -gd00)'=gd02' H '4gd00',Џthatis,iftheimageofproMductfistheproductofimages.Weeillustrateitb!ythefollowingpicture:؍{X';'̟{X&{XL$L;'̟{X%/{X /{X {X';'̟{X&{Xℨ$ℨ;'̟{X%{X {X 9E:E;UVE/)%gd309gd3001gd30Zgd300EЪEUVEh30h300h301h300)32fdPά-y32fdF32fd -=32fdfe=GGfdfe=f[fdfe=pCfdfe>Ԅrfdfe>fԘfdfe>nԬfdfe>@fdfe?>jfdfe?.fdfe?Пfdfe@fdfe@]#fdfe@6|fdfe@|IfdfeA5{]%fdfeA}pbfdfeAzՃzfdfeB ՖfdfeBUթ{fdfeBռffdfeBɟ(fdfeC-ڟfdfeCvfdfeC fdfeDWfdfeDN+fdfeD>7fdfeDP~fdfeE'RbfdfeEotfdfeEֆfdfeF ֘fdfeFH֪RfdfeFּfdfeF;ͳfdfeG!VfdfeGj+fdfeG:fdfeG fdfeHCp$ʄfdfeH6fdfeHԘGfdfeI XfdfeIehfdfeI'yلfdfeIԟ׊fdfeJ?כDfdfeJ׫„fdfeJΟ׼[fdfeK̮fdfeKb)fdfeKFfdfeKfdfeLfdfeOWffdfeP96fdfePj5fdfeP˞ fdfeQ؟fdfeQ]П!rfdfeQ/ׄfdfeQ>pfdfeR9fLfdfeR[fdfeR˟i)fdfeS,wpfdfeS^مTfdfeSٓrfdfeS"١+fdfeT:Hٯ fdfeTşټfdfeTHzfdfeU|݄fdfeU` 倄fdfeUfdfeU2fdfeV< ?fdfeVʟfdfeVt'rfdfeW$4fdfeWb}AQfdfeW8NPfdfeWZ܄fdfeX?`gfdfeX,tfdfeXҜڀfdfeYsڌfdfeYfPڙzfdfeYΟڥfdfeYڱfdfeZC=ھ'fdfeZ0fdfeZ)fdfe[ ᰄfdfe[jŸfdfe[̟fdfe[ofdfe\H0fdfe\0ӄfdfe\P&fdfe]&v2lfdfe]p0=`fdfe]aHfdfe^Szfdfe^N`^fdfe^i@fdfe^st?fdfe_,~fdfe_wۉfdfe_ۓЄfdfe` P۞}fdfe`U8ۨfdfe`۳fdfe`۽fdfea4kfdfea~2fdfeadfdfebfdfeb] fdfebzfdfeb2Zfdfec<Ο &fdfecWfdfecѐfdfed=(fdfedff1zfdfed:UfdfedPCfdfeeFLVfdfeeܟU~fdfee^fdfef%gfdfefp9o\fdfefx2fdfeg܀afdfegPT܉fdfegDܑfdfeg:ܙfdfeh0ܡofdfeh{ܩʄfdfehܱxfdfeiܹfdfei\,-fdfei6fdfeişЎfdfejfdfe5$0fdfe.#fdfe̟ fdfe`fdfek >fdfeքfdfeZGfdfeSfdfefdfe턟Bfdfe;O]fdfezfdfeޟ jfdfe" ^fdfep#fdfehfdfe 8fdfeY**fdfe"fdfefdfeBwfdfefdfefdfe+ fdfexfdfe ҄fdfe༄fdfeaHjfdfex+fdfeԮfdfeJFfdfe̞fdfe fdfe4f:fdfefdfeݻfdfe=ݷfdfeknݲvfdfe֟ݮjfdfeDݩfdfeUݤfdfeݟbfdfeDݛfdfe?ȟݕZfdfeRݐӄfdfeۨ݊fdfe*=݆Nfdfex؟݀Nfdfe<{ufdfeuJfdfebOpHfdfek2fdfedDŽfdfeM2_fdfeXfdfexSfdfe8ELɄfdfeG8fdfeԪ@Lfdfe#:fdferl3{fdfe -fdfe&Vfdfe\ Jfdfe݄fdfefdfeHU fdfe`fdfeqfdfe46hfdfeRzfdfe ʄfdfe G߱fdfeot؄fdfePДfdfe ɒfdfeZm#fdfeܹfdfeܱ^fdfeFܪ fdfe@ܡEfdfe嚟ܙȄfdfe3ܐ؄fdfe܉2fdfe ܁xfdfe zxHfdfeopefdfeg fdfe ^fdfe]Uxfdfe6MCfdfeȟCfdfeH;4fdfe1Xfdfe7(фfdfe6tʄfdfe"fdfe֟ fdfe$!fdfesfdfe4ﰄfdfe(fdfeaΟfdfe0Jfdfe fdfeNv۽fdfe\۳fdfeHۨfdfe<۞fdfeۓfdfeܵۉfdfe+<~fdfe{Dtfdfeԟifdfe^fdfejTfdfeHfdfeŸ>fdfeX2fdfe(fdfe͟fdfeF>fdfeŸfdfefdfe5˟fdfe⢄fdfefdfe%Dքfdfeuھ fdfeĀڲfdfeڥfdfee`ښBfdfeHڍ fdfeƟځzfdfeSt-fdfe@h^fdfeϟZfdfeCΟNfdfehAKfdfe5*fdfe4'\fdfefdfe֟ fdfe$fdfeuHfdfelfdfe36fdfef҄fdfe2ٽfdfe ٯjfdfeUE٢hfdfe(ٓfdfeنfdfeFZwfdfeNjJfdfe栟[:fdfe7Mfdfe>fdfe0܄fdfe)!vfdfez*fdfeɘfdfefdfej0bfdfe\Afdfe Zfdfe\غfdfePةfdfe؛fdfeN&؋Nfdfet|fdfelJfdfe@i]fdfeȟLfdfer>fdfe2ܟ-Ffdfe/fdfefdfe%fdfeu@fdfeƟ݉fdfeR fdfeh!׼fdfeù׭fdfe כfdfe[2׋ĄfdfeĬڟzfdfej"fdfeNsXMfdfeŠ,H,fdfe 6,fdfeA%fdfeƑfdfe㰟Dfdfe5fdfeDžRfdfepфfdfe)Vֽ fdfeyo֪`fdfe`֙rfdfeֆfdfem~ufdfeɿbfdfeQBfdfea>fdfeʱ,fdfeTfdfeV,„fdfe˦sfdfe℄fdfeJ˟еfdfe̛ ռfdfeZժfdfe=՗ fdfe͏ՄfdfeHp҄fdfe2^fdfe΅ JDfdfef7фfdfe'#bfdfezGƄfdfeʟ,fdfefdfe;ퟻ~6fdfe;Пj~fdfe<Vfdfe<]CVfdfe քfdfe>Ufdfe>fdfe>ɟ<fdfe?-ڟzfdfe?vqfdfe? _Jfdfe@WLބfdfe@N:nfdfe@(-fdfe@fdfeA'RЄfdfeAofdfeA៹DŽfdfeB ҄fdfeBHfdfeBFfdfeB;fdfeC!fdfeCj+ufdfeCd*fdfeC RĄfdfeDCpAfdfeD0]fdfeDԘ^fdfeE JfdfeEevfdfeE'싄fdfeEԟfdfeF? fdfeFfdfeFΟ fdfeGfdfeGb)FfdfeGyfdfeG󘟸hׄfdfeHfdfeS$1ʄfdfeSb}%fdfeS8fdfeS fdfeT?`fdfeT,QfdfeTҜ处fdfeUsnfdfeUfPfdfeUΟ߄fdfeUfdfeVC==fdfeV0rfdfeV)TfdfeW fdfeWjŸxfdfeW̟mJfdfeWoa~fdfeXHV4fdfeX0JfdfeXP?rfdfeY&v3fdfeYp0)fdfeYafdfeZfdfeZN`„fdfeZ$fdfeZs%fdfe[,粄fdfe[w܄fdfe[Ҕfdfe\ Pfdfe\U8ʄfdfe\Ffdfe\Tfdfe]4fdfe]~2fdfe]fdfe^dfdfe^]w[fdfe^mfdfe^2d fdfe_<ΟZ>fdfe_韴Q fdfe_ѐGjfdfe`=>dfdfe`ff4fdfe`,fdfe`P"fdfeaFfdfeaܟfdfeaafdfeb%bfdfebp9fdfeb2fdfecfdfecPTVfdfecDRfdfec:΄fdfed0fdfed{fdfedfdfeefdfee\,7fdfee.fdfeeşքfdfef<蟳fdfefrɄfdfefҠfdfeg3xfdfeghlpfdfegifdfegLbFfdfehIZfdfeh柳T^fdfehߕM6fdfei*Fʄfdfeiu?˄fdfei9fdfej z2fdfejW@,fdfej%fdfej톟 fdfek9fdfek„fdfekm gfdfel҄fdfelffdfel6fdfel(-fdfemHfdfem˟fdfem߀fdfen*CfdfenvBZfdfen̄fdfeo fdfeoX韲˩fdfeofdfeoޟڄfdfep;rfdfep矲_fdfepԟ"fdfeq8fdfeqibfdfeqefdfer8fdferMAfdferPbfdfer䜟fdfes0`fdfes| fdfes0fdfet[afdfet_Xfdfet2fdfet0{RfdfeuCxWfdfeu蟲tfdfeubqЄfdfev'nBfdfevt kfdfevh8fdfew efdfewX`bfdfew`3fdfewj] fdfex< ZfdfexXfdfex Vfdfey SXfdfeymJQfdfeyNfdfezMOfdfezR„fdfe|^=fdfe}G<)fdfe}N ;rfdfe}9fdfe}9Xfdfe~37fdfe~7fdfe~՟6VfdfeП6 fdfeeޟ5 fdfe䟲5fdfe4fdfeL 48fdfe#3wfdfeH3„fdfe2j3*fdfe3fdfeş31fdfe3҄fdfee43fdfer4Xfdfe4;fdfeL52fdfeO5>fdfe椟5^fdfe26fdfe\6ބfdfe̽8@fdfe(8fdfeg:?fdfe:ڄfdfe<fdfeO=Vfdfe?9fdfe@&fdfe5B4fdfe.CJfdfe̟Efdfe`F„fdfek I&fdfeJfdfeZMfdfeSNfdfeQhfdfe턟S"fdfe;OVfdfeWfdfeޟZfdfe"]fdfep`Afdfehbvfdfe 8e܄fdfeY*h:fdfe"k˄fdfenRfdfeBpfdfeꟲtfdfewfdfe+ {~fdfex~kfdfe fdfefdfeaHfdfex9fdfefdfeJfdfeƄfdfeWfdfe4f*fdfefdfefdfe=ńfdfeknfdfe֟fdfeDNfdfeUfdfefdfeD`fdfe?ȟ fdfeRՑfdfeۨffdfe*=fdfex؟fdfe<fdfe⟲fdfebOfdfe2fdfefdfeM2܄fdfe rfdfexڄfdfe8Efdfe,fdfeԪ&fdfe#+҄fdferl2fdfe 8̄fdfe@fdfe\FfdfeMfdfeSfdfeHU[Tfdfe`afdfeqiufdfe46ofdfeRwfdfe ~fdfe GfdfeotfdfePЄfdfe ҄fdfeZmAfdfelfdfefdfeF쟳Zfdfe@fdfe嚟̜fdfe3Ռfdfe2fdfe fdfe zfdfeofdfeZfdfe ffdfe]fdfe6!fdfeȟ"҄fdfeH+0fdfe5 fdfe7=fdfe6tGfdfe"PJfdfe֟Z|fdfe$!cUfdfesmfdfe4vfdfe<fdfeaΟgfdfe0fdfe nfdfeNvLfdfe\ɄfdfeH҄fdfeVfdfe͟JvfdfeFU&fdfeŸaqfdfelJfdfe5˟xfdfe„fdfe蟵cfdfe%DfdfeuZfdfeĀfdfeퟵfdfee`"fdfeHDfdfeƟfdfeS7fdfe@fdfeϟ ~fdfeCΟvfdfeh%fdfe1:fdfe4?fdfeKRfdfe֟YKfdfe$efdfeuHsfdfel~fdfe3.fdfeffdfe2kfdfe fdfeUEfdfe(ҶfdfefdfeFZƄfdfeNfdfe栟 *fdfe7fdfe'fdfe5fdfe)Dfdfez*RfdfeɘbNfdfepFfdfej0fdfe\#fdfe fdfe\TfdfePffdfeلfdfeN&fdfet鲄fdfefdfe@i߄fdfeȟrfdfer(`fdfe2ܟ9fdfeH5fdfeW`fdfe%h^fdfeu@wfdfeƟۄfdfeRXfdfeh!fdfeRfdfe фfdfe[2ڠfdfeڟJfdfeBfdfeNsfdfe,8fdfe 08fdfeA䟹@fdfe‘៹Rfdfe㰟c fdfe5uvfdfeÅfdfepfdfe)VXfdfeyofdfe`fdfeɄfdfem~fdfeſfdfe"fdfea(OfdfeƱ9fdfeMfdfeV,^fdfeǦspHfdfefdfeJ˟fdfeț rfdfeZjfdfe=XfdfeɏyfdfeHfdfe2܄fdfeʅ  fdfef.fdfe'CfdfezGUfdfeʟj8fdfe<|fdfeo„fdfeEfdfeȟfdfecb̷fdfe͵҄fdfefdfeY, XfdfeΫ˟fdfep32fdfeu'''Herefgd02' =h09;1gd00'=h00')(gd0gd00)'=h09h00r.Ifmoreo!ver,'isabijection,w!esaythat'isanisomorphism,andGandHȦaresaidtobMefisomorphic,G l =H.IfԪH;=WG,;thehomomorphismiscalledendomorphism,andanisomorphismofGon!toGisfcalledautomorphism.t13>ŠiӍ:-iӍ|-Examplef1:7H@':G!HH;^':g.7!1HD,^that+-isforeac!hg2G;1gd'=1HD,^is+-alw!aysa homomorphism:(gd02gd00)' =1H #=gd0'ngd00' =1HD:1HExamplef1:8Gĕ':G!G;c':g(7!gd,ethat2is'idG ʹis2alw!aysanautomorphism:u'isbijectionfand(gd02gd00)' =gd0gd00=gd0ngd00=(gd02')n(gd00'):UTheorem21.24QUkLpetUG,$Hbegroupsand' :G!Hahomomorphism.De neIm '=fgd'jgo:2Gg =G';Ker'=fgo:2Gjgd'=1HDg. vThenIm'HH;1Ker'nEGandG=Ker' l =Imƾ'. TaPrpoof: v1)f1G' =1H #: (gn1G)'=gd'=g'n1G' =g'n1H $PT.:h:25 #=,)ܹ1G' =1HT52)fgd1 ' =(gd')1g#: (g1g)' =1G'1);㍓=1H #=gd1'ngd' =(g')1 \|g' T.:h:25=,)g1 '=(g')1 \|.3)Im.'+H{: -h09;1h00 2Imp'=,)9gd02;gd00 s:th:h0fd=gd02';h00 =gd00'=,)h09h00=gd02' gd00'+=f(gd02gd00)' =,)h09h00'2Im' T.:h:75=)Im$'H.4)6KerF' G:!gd02;1gd002Ker'=,)gd0'=gd00'=1H #=,)(gd0gd00)'=gd0'Pgd00' =1H iP1H #=1H=,)gd0ngd002 Ker' T.:h:75 =,)Ker)e' G.T55)YKer'fEG5Y:denotefKer='=N1;,8g2GY8n2N=(ng)'=(gd1 ngd)'=g1 'fn'g'\2);㍑5Y=(gd')1 hn1H 0g' =1H #=,)ngߥ2Ker'=NDgz1'=1H #=,)(ged12 ')(gz1')=1H #=,)(ged12 gz1)'=1H #=,) ged12 gz1ʫ2Nh2HGfnhjn2N1g=TɖS >h2H\xNh=TɖS >h2H\xhN=TɖS >h2HGfhn1jn2rN1g =fhn1jh 2HH;1n2Ng=HN4'Djv6=i;jG& ~ĖCaGzjSn= f(1;1?;11;gzid;1;;1)jgzio2 GzidgɖT 2f(gz1;;gzi1AV;1;gzi+1;?;gȮk#)j8j$gzjp2/`Gzjf g =f(1;11;?;1;;1)g =1G. ]? )`8gd0=s2;jNI~Ė Gzi ,f8gd002;j~Ė Gzj ,i 6=jv,fgd02gd00=gd00gd02̹.JaTheorem21.26QUkLpetGbeagroupandNz1;1Nz2;?;NȮk~EnGsuchthat *1)`G =Nz1Nz251,NȮk *2)`Nz151,Nzi1ɖTNzio= 1,fori=2;1?;1kX?.Then0mGl=lNz1aOKNz21NȮk#,Athe0mdirpectproductofNz1;1?;1NȮk#.IdentifyingthegroupsNzidں, i@~=1;12;?;kX?,withtheirnaturpalimages,wecpanconsiderGtobethedirectproductofitssubpgroupsNz1;1?;1NȮk#.t15liӍ:-iӍ|-Prpoof:˹Because ofnormalit!yofN10 his;1(Nz15:::,Nzi1AV)Nzi=Nzidڹ(Nz15:::Nzi1AV) andsob!yTh.22and b!yfinductionNz15:1::,Nzio Gforalli;11ikX?:( `)Letg2(G.Bycondition1)itisg=(nz1nz251,nȮk#,=forsomenzi2Nzidڹ,=i=1;12;?;kX?.Thisfrepresen!tationofg isunique:Ifgo:= (nz15:1::,nȮk61)nȮk.9=(n0S15:1::n0Nk61)n0Nk#;18innzid;n0 hio2 Nzi)nȮkne01$k\=(nz15:1::,nȮk61)1 \|(n0S15:1::n0Nk61)2ͣNȮk|\Nz15:1::,NȮk61H2);㍑ͱ= 1)nȮk#ne01$kxX=1)nȮk5=n0Nk:dThereforealsonz15:1::,nȮk61ͱ=ͣn0S15:1::n0Nk61.WeeproMceedb!yinduction. Ifalreadyn0 hj 5g=]nzj forjo>i,andnz15:1::,nzi1AVnzi47=n0S15:1::n0 hi1AVn0 hidڹ,w!egetinthesamewaythatnzi=n0 hidڹ.Son0 hi=nzikܹforalli=1;1:::l;1nandtherepresen!tationgo:= nz1nz25:1::,nȮkBisunique.KTh!us : G7!Nz1φNz2:1::gNȮk#;go:= nz1;1nz25:::,nȮk.97!(nz1;nz25:::,nȮk#)isfabijection.Ja( )fIfnzio2 Nzid;1nzjp2Nzj pandfi6=jv,thennzidnzjp=nzjf nzi:Weeccanassumewithoutlossthatj< i.No!wNzj\^NzioNz15:1::,Nzj9;:1::Nzi1=\Nzio=1)Nzj\Nzio=1.xObserv!evne1i \|ne1jnzidnzjf .SincevNzi;1Nzjv(EG,w!ehave:F)ne1i \|ne1jnzidnzjp= ne1inאn8:j mMi 2NzidNא1n8:j mMi q=NziNzio=̍Nzidڹ,andne1i \|ne1jnzinzj~=ot(ne1j)n8:inzj2otN;1n8:iBj aNzj=Nzjf Nzj=Nzjf .NSone1i \|ne1jnzidnzj2otNzi\>Nzj=1)ne1i \|ne1jnzidnzjp= 1)nzinzjp=nzjf nzi.( )fLetgd02;1gd002 G;gd0=s=n0S1n0S25:::,n0Nk#;gd00=n00S1rn00S2:::7n00Nk#.Thenfgd02gd00=n0S1n00S1rn0S2n00S2:1::7n0Nk#n00Nk: InbtheproMductgd02gd00 =n0S1n0S25:1::,n0Nk#n00S1rn00S2:1::7n00Nk eac!hn00 hi Թcan,!becauseof( ),!\jumpo!ver"bleftneigh!bMoursfuntilitcomestotherightplaceofn0 hidڹ,whichresultsintheformstatedabMove.(j)Weeseeb!y( `)and( )that l:G!Nz1:Nz2:1::;NȮk l:g=nz1nz25:1::,nȮk +!(nz1;1nz2;:::l;nȮk#)fisanisomorphism:(gd02gd00) p=3(n0S1n00S1rn0S2n00S2:1::7n0Nk#n00Nk) 7!3ݹ(nz1n0S1;1nz2n0S25:::,nȮk#n0Nk)3=(nz1;nz25:::,nȮk#)(n0S1;n0S25:::,n0Nk#)3=(n0S1n0S25:1::,n0Nk#)'f(n00S1rn00S2:1::7n00Nk)' =(gd02 d)(g00 ).InEthefollo!wingweshalllist,withoutproMof,someimpMortan!tresultsconcerningstructureoff nitegroups.De nitionf1:18T׹Denote^thesetofprimesb!y,=fn2Nj^n=ab;`a;1b2N7)a=1Aorb =1g=f2;13;5;7;11;13;:::g.bLetm 2N;1p2.bWeewritept>n,V forptqjnandpt+1x-n.Th!usfpt80isthehighestpMowerofp>,dividingn.De nitionf1:19S߹LetfpbMeaprime.Gisapgrpoup,ifj Gj=ptʹ,fforsomet 2N[n0.De nitionf1:20U$LetGbMeagroup,Hpaprimeandpt>jGj.AsubgroupP8qGoforderjPVj_=ptis calledSylow4p-subpgroupof G. Weedenoteb!ySydlzp](G)thesetofallSylowp-subgroupsfofG.JaTheorem21.27QUkLpetGbeagroup,p 2. vThen:(1)TherpeexistssomeP Gs.th. vjPVj=pt>jGj,thatisSydlzp]G6=;.(2)-IfPz1;1Pz2C2Sydlzp](G))9gtP<Vgv1 K=Pz2,>so-Sylowp-subpgroups-arealFlconjugatewitheachother.(3)Eachp-subpgroupofGiscpontainedinsomeSylowp-subpgroup.(4)4F)orthenumbperofSylowp-subgroupsinG;wehave:!jSydlzp](G)j`,1(LmoMdp)4andjSydlzp](G)jjGj.t16ėiӍ:-iӍ|-Examplef1:9Jb/IffjGj =15,thenG=PBnQ;yP2Sydlz3(G);Q2Sydlz5(G).fPrpoof: SjGj =3n5 T.:h:275*D=,) (1)9P G;1jPVj=3;9QG;jQj=5:(2)PM;1QnEG :jSydlz3(G)j1(Lmod3))jSydlz3(G)j2f1;14;7;10;13;:::gand%mjSydlz3(G)jj15)jSydlz3(G)j=1)PEnEG,.bMecause%mPVg Y2Sydlzp]G%m)PVg Y=Pù(PisuniqueSylo!wp-subgroup).9InthesamewaywegetQTEG.9Sinceobviouslye,̪P\Q==1,and!ȍjPVQj =2jP.:jjQj=ڟ@p ]ҟp jP.:j\jQj$ن=K=ھ35=ڟp |KdN<1X0=15=jGj,fitfollo!wsthatG =PQ.No!wfG=PBnQb!yTh.26.JaTheorem21.28QUkLpet^Gbeanabeliangroup.ThenGisthedirectproductofitsSylowpsubgroups.%pPrpoof: v:Letfj Gj=k g ɖQ 퍓i=1.p; 8:iBi " ;18i;y zio1;pzio2;pzio6=pzjf ;ffori 6=j;fandletPzi2 Sydlzp8:iϹ(G);aˍjPzidj =p; 8:iBi " ;yf-orDi=1;12;:::l;kX?:Ja1)8i;*PziE{EG:AsGisabMeliangroup,andtherefore:eg2G;1H_G)gdH=Hgd,ev!erysubgroupfofGisnormalinG.2)fG =Pz1Pz251,PȮk#:Because|ofcomm!utativity|Pz1Pz2 ι=Pz2Pz1G.YBy|proMductform!ula(Th.13)jPz1Pz2 j=jjPq1*jjPq2j33@p  p jPq1*\Pq2j# = +pqǍ Ϳ1N1 ~bpqǍ Ϳ2N2+mUp ~Kd 1%D=p q1č1 >p q2č2.UWee59proMceedb!yinduction.LetalreadyPz1Pz251,Pzi1vbMeagroup0Dandňj>Pz1Pz251,Pzi1j=p q1č1 >p q2č2 o1p, 8:i1 i1ɹ.;BNo!w(Pz1Pz251,Pzi1AV)Pzic=Pzidڹ(Pz1Pz251,Pzi1AV),PbMecauseňofcomm!utativityfofG,andsoPz1Pz251,Pzi1AVPzi @isagroup,b!yTh.22.ItsorderisbyTh.14:@7juPz1Pz251,Pzi1AVPziYj=v!jPq1*Pq2 @P8:i1 2jjP8:i,rjΉp ?'.p jPq1*Pq2 @P8:i1 2\P8:i,rjJx= pqǍ Ϳ1N1 ~bpqǍ Ϳ2N2p8:i,r 8:imUp 2Kd;W1>=p q1č1 >p q2č2 o1p; 8:iBi " .jNamelye,thegreatest/Xcommonfdivisorofj Pz1Pz251,Pzi1KjandjPziojis1,sojPz1Pz251,Pzi1B\nPzioj=1.Infsuc!hawaythisformulaistruefori =1;12;:::l;kX?.pThereforejPz1Pz251,PȮk ֨j= Ak g hɖQ 퍓i=1Gp; 8:iBi =jGj.SincealsoPz1Pz251,PȮk ֨G,itm!ustbMeG=mÍPz1Pz251,PȮk#.3)fAsindicatedabMo!ve,LPz1Pz251,Pzi1B\nPzio= 1f.Ferom_h1),2)and3),itfollo!wsbyTh.26thatGis(isomorphicto)thedirectproMductofPz1Pz251,PȮk#,ftheSylo!wpzidsubgroups(i =1;1:::l;1kX?)fofthegroupG.ItfremainstheproblemtodeterminethestructureofanabMelianp-group.Weeha!ve:JaTheorem21.29QUkB:dLpetPM;1jPVjB=p ,dbeanabelianp-group,forsomepB2.dThenP is(isomorphicto)thedirpectproductofcyclicp-groups:P= Az1.nAz21;Azt;!0kBAzio= hazidja-:0`c x-:0 q) =a + -:0Ǿ(modf4)3<{b i>+ -:0(modf3)2c x+ -:0*(modf3)2.FeorfEx.a3b2cna2b2c2ʫ= a5b4c3= abt18&iӍ:-iӍFChapter 27ǍP8ermutation T{Groups;JaWeefstartagainwithTheorem1fromthe rstc!hapter.̍Theorem22.1K Each.RppermutationW2S( ),?,j j=n.Rontheset ,cpanberepresentedinthe cyclicform: 獑& o:= ( z1;1 z1d;:::l; z1dzrq1*1)lŹ( zid; zid;:::l; zidzr8:i,r1q)lŹ( zsn<; zsd;:::l; zsdzrs1ƹ);j4]. z1;1:::l;1 zsx2 ;O s X "㍑i=1b_rzio=n;( ziddzr8:i,r1q)o:= ziOf-or8al7)l"i;"@Lthatisasaprpoductofcyclesoflengthsrz1;1:::l;1rzsn<.ThecyclesofO}cponstituteapartitionof .Weefha!vealsoseenhowtocomputeproMductsofperm!utationsrepresentedincyclicform.De nitionf2:1NvZLet2~S( ).Weesa!ythatHisofcyclicQtyppe(kz1;1kz2;:::l;kznP),ifithaskz1cyclesfoflength1,kz2fjcyclesoflength2,:1::?;kzn Ncyclesoflengthn.Examplef2:1ERThenpMerm!utationo:= (12)(358)(47)(6),:2Sz8,:isnofcyclict!ypMe(1;12;1;0;0;0;0;0).De nitionf2:2M Ev!eryfsubgroupGofthesymmetricgroupS( )(ofdegreen)iscalledppermutationgroupf(ofdegreen).De nitionf2:3LRLetnG S( ),:o:2G,ӂbMeingnofcyclict!ype(kz1;1kz2;:::l;kznP) (kz1(d);kz2(d);:::l;kznP()).Letftz1;1tz2;:::l;tzn NbMefvdDariables.Denoteb!yTV(d)theexpressionTV(d) =t:ukq1*(I{)S16t:ukq2*(I{)S2g1%Ktzkn7(I{):jn:Zӹ(2.1) 獺TheQcyclicindexofthegrpoupGisthea!verageofallsuc!hmonomialsoverall2`G,thatis,thefpMolynomialo!verfQ(thesetofrationaln!umbers):ITZG(tz1;1tz2;:::l;tznP) :=ٺ1=ڟ㦉p Y jGjǷX PrI{2G)>TV(d):Zӹ(2.2)]Yt19.iӍ:-iӍ|-Examplef2:2ERLetnG Sz4ʫ=S(f1;12;3;4g),:G =f1;1(12);(34);(12)(34)g:Since1 (1)(2)(3)(4); (12) (12)(3)(4);1(34)(1)(2)(34),thefcyclicindexofGis:J ZG(tz1;1tz2;tz3;tz4) ==1=ڟ㦉p y 4 (tz4:j1.+ntz2:j1tz2+ntz2:j1tz2+ntz2:j2) ==1=ڟ㦉p y 4 (tz4:j1+n2tz2:j1tz2+ntz2:j2)De nitionf2:4M#Let~ bMea niteset,Gagroupand:$G7!S a~homomorphism:$g7!zg;1g2`IG;zg5G2S ,andsozgq1*zgq2 s=zgq1*gq2forgz1;1gz2 M2G:Thenw!esaythatGacts/on .xWeede nefon arelationG b!y:Jatdfor `;1 2 ;y G *? (,) 9go:2Gf `zgߥ= JaTheorem22.2K TherpelationG on isanequivalencerelationon .Prpoof:1)/8 : G  `:ffor1m2G/isz1q=m1SX. dE-theiden!tity/mapping.yTh!us z1q=m : andso G *? `.2): G  O)x] G :` G  O)x]9g2G;k `zgM[= ) `zg_ngI{1?= z18a= = _ngI{1?)9gd1˶2 G;y _ngI{1e= ) G *? 3) G  ;1 @uG H>) G H>:9gd;1g0O2G;ڵ `zg= ; gI{0 3H= H>) = gI{0 3H= `zggI{0= `gI{g0j) 9gd;1g0=s2Gfs.th. `gI{g0j= b) G *? De nitionf2:5MTheequivdDalenceclassesforG ɒon arecalledG-orbits4on .Feor 2 w!edenote:theorbitof ˚b!y `G7^=f zg \jg2Gg:anditslengthb!yj Gj..ZLetf z1;1:::l zqgbMetherepresen!tativessrofG-orbitson .Then  =t=fgo:2G1j `zgߥ= gfiscalledthestabilizerof JinG.Thefelemen!tsof wecallpMoints.JaTheorem22.3K LpetGactson , 2 . vThenGz >Gandj `Gj=jG:Gz j.Prpoof: 1)2gd02;1gd00 T2OGz ) `gI{0 = = gI{00 D) gI{0BgI{00K= gI{0gI{00 D۹=( gI{0Ź)gI{00 D۹= gI{00 D۹= )@gd02gd002 Gz >T.:hf1:75K)%Gz >G. 2)( `G㍹=f zg/j1gH 2Gg.dINo!w,I zg= gI{0 jR, zged12JgI{0= gI{0_ngI{01= 1 != , _ngI{g011=F , gdg012Gz >,go:2Gz g0=s,Gz go:=Gz gd02̹.So" `zgҹ= gI{0 `,Gz g>g=Gz gd0Uand,Aconsequen!tlye, `zg6= gI{0 `,Gz g>g6=Gz gd02̹.RTh!us,Atherearefasman!ypMointsin `GascosetsofGz inG,thatis,j Gj =jG:Gz j=jGj=jGz j.JaCorollary22.4Mj `GjnjGz j =jGjforalFl 2 .JaTheorem22.5K F)or 2 `Gwith = `zg,go:2G,wehaveGȮ =G,g0=s2g1 Gz go:=G i>2 XxȮ i>fq2=WV(fz2),_ssincef = `g runsthroughallof as ƹdoMes.Hence$fz1ʫG *?fz2w) WV(fz1)=W(fz2)andfw!eseethatallmappingsofaG-patternFhavethesameweight.Thuswecande ne.De nitionf3:4M Thefw!eightofapatternFisWV(F) :=WV(f-);yforDany f8c2 FM:Examplef3:3G׋Let(thew!eights(ofbandr, Pb;1r1q2R, bMewKn(b)=xȮb"ܹ, w(rM޹)=xzrb.1$Then(forfz1;1fz2;fz3;fz4fjfromfEx.3.1:=WV(fz1) =xȮb"xȮbxzrbxȮbxzrxzr = xz3Nbxz3:jrߍ=WV(fz2) =xȮb"xzrbxzrxzrxȮbxȮb-= xz3Nbxz3:jr=WV(fz3) =xzrbxȮb"xȮbxzrxzrxȮb-= xz3Nbxz3:jrWV(fz1) =xzrbxzrxzrxȮb"xzrxȮb-= xz2Nbxz4:jr(WeefseethatWV(fz3) =W(fz1)falthoughfz3ʫG *?fz1.)t237iӍ:-iӍ|-De nitionf3:5M AfsubsetF! R _iscalledclosepdwithrespecttofG S( )a,if: f8c2 F_;ygo:2G)gdf2F_,fthatis,ifFŹcon!tains,withanyf8c2 R <,thewholepatternGf-.Weefdenoteb!yMthesetofallGpatternsandbyMF thesetofpatternsinFExamplef3:4GThesetF߹=݀ff <2R jWV(f-)=x Nbx6 Ar;1 2gisclosedwithrespMecttotherYgroupGofallrotationsofthecubMe,|becauserYaftercarryingoutsuc!harotationtheabMovecondition,fthatthereareatleast2blac!kcolouredsides,ispreserved.De nitionf3:6M LetfR0 R;yF!R <.Weefde neinventoriesofR0GandM0Aab!y:Jainv R0:=[ɖP | r f2F]WV(f-)Examplef3:5G~͹InijourEx.1w!ehave:cinvReT=OxȮbʹ+xzrb;ԹandforFf =ffz1fz2;1fz3;fz4g,+w!eijhave:in!vF!= x3Nbx3Ar.+nx3Nbx3Ar+nx3Nbx3Ar+nx2Nbx4Arʫ= 3x3Nbx3Ar+nx2Nbx4ArB#Theorem23.3K inv(R <) =(PڟɖP |r8i `;1 N2 zi|6) fE= f-g>thesetofalFlfunctionsthatarpeconstantoneach zidں.WTheninvF_0 = ɖQA b tH b i=1v(ɖP =xzrb,{WV(f-)andW(F)bpetheweightsofr2>R;1flt2R N4andofG-ppatternF2 M,respectively. vThen:2qX PrnF.:2MÜWV(F) =ZG(/ɟX PrrߍE)8Weecomputeno!wɖP {jZ(J(J(j'1pM39M4,4`2Aȟ4`50p1%W9eПZH{Z0pd0G =f1;11(25)(34);2(13)(45);3(15)(24);4(35)(12);ۈH5(14)(23);1(12345);(13524);(14253);(15432)gNo!w,fZG *?=K]ܾ1=ڟp Kd10 (t5S1.+n5tz1t2S2+4tz5)fandsoforncolours:=X PrFDWV(F) =1=ڟ㦉p 4 10dA[(xz1+xz2+15+xznP)z5+5(xz1+15+xznP)(xz2:j1+15+xz2:jnP)z2+4(xz5:j1+xz5:j2+1}xz5:jnP)];(ߧsetting%xzio= 1foralliw!egetastotalnumbMerofpossiblecolouringsjMznPj =1=ڟ㦉p 4 10dA[nz5.+n5nz3+4n].Feorfexample,for3coloursx;1yd;z{I:MJC&X Pr*F7)WV(F) =1=ڟ㦉p 4 10dA[(xn+y+z{I)z5.+5(x+y+z{I)(xz2.+ydz2+zz2;M)z2.+4(xz5+ydz5+z{Iz5;M)]!*SettingYWx =yo:=z=1,hw!eget:UjMz3j=K]ܾ1=ڟp Kd10 [35ҹ+533+43] =K=ھ390=ڟp Kd 10;=39YWthecoMecien!tofx2yd2$zcorrespMondstothen!umberofcolouringwith3determinedcolourssuc!hthatoneofthemisappliedmonceandtheothert!womtwice.5ItcanbMeeasilyseen,thatthisnumbMerequalsK1p Kd10m40 =4.Examplef3:8GHo!wmanycolouringsoftheverticesofatetrahedronarethereifweapply3fcolours.eО32fd,beЬ"eП,eП6eП:Ȱ]e z %$ +~+ D~1pfe?ȰA:ȰA5ȰA2J(A2J(@7ȟ-@,&1=bM4.@29x30G =f1;1(12)(34);(13)(24);(14)(23);1(234);2(134);ۈH3(124);14(123);1(243);2(143);3(142);4(132)gv㍹=,) ZG *?=1=ڟ㦉p 4 12dA(tz4:j1.+n3tz2:j2+8tz1tz3)=,) X PrFWV(F) =1=ڟ㦉p 4 12dA[(xn+y+z{I)z4.+3(xz2+ydz2+z{Iz2;M)z2+8(x+y+z{I)(xz3+ydz3+z{Iz3;M)]:;x =yo:=z=1=,)jM1j=1=ڟ㦉p 4 12dA[3z4.+n33z2+83z2] ==32(9n+3+8)=ڟ㦉p = 3n4Fj=15t27(iӍ:-iӍ|-Weefshallsolv!enowtheproblemstatedatthebMeginning: Examplef3:9FɹHo!wfmanycolouringsofcubMesur cesarethere,ifweapply3colours?}ЍI 9fd'耎@l>fd'耎I Pfd'耎@DVrfd'耎I'fel 'feqn'fel 'feI S ] g q {  z@v I `S `] z`g p`q f`{ \` R`@N%q⠟{⠟⠟⠟⠟⠟⠠zv q⠠`{⠠`⠠z`⠠p`⠠f`⠠\`⠠R`N%`p(5)zrw6zr`"1zr (2)zrX 0(3)Ȯby 04ȮbThefrotationgroupofcubMeconsistsof24elemen!ts:Ja8j8rotationsaroundthefourgreatdiagonals,,b!y120 * 3 cmmi10Aacmr6|{Ycmr8NH cmbx12Nq cmbx12': 3 cmti10K`y 3 cmr10< lcirclew10< lcircle10O linew10O line10}