ࡱ> ]7 (bjbjUU f67|7|l  DTD=$$$$'''i<k<k<k<k<k<k<$H> h@<'&@'''<;-$$L=;-;-;-'$$i<;-'i<;-d;-24-5$ Ö1|wD't4-5<b=0=5,A,A-5;-DDInsecticidal activity of some aromatic plants from Croatia against lesser grain borer (Rhyzopertha dominica F.) on stored wheat Irma Kalinovia(, Vlatka Rozmana, Vlado Guberaca, Sonja Maria aFaculty of Agriculture in Osijek, Trg Sv. Trojstva 3, 31000 Osijek, Croatia Abstract Essential oils and plant dust of four Croatian aromatic plants (Lavandula officinalis Ch., Laurus nobilis L., Rosmarinus officinalis L., Thymus vulgaris L.), were tested for insecticidal activity against lesser grain borer Rhyzopertha dominica F. on mercantile and seed wheat under laboratory and storage conditions. The insecticidal effect was observed over the exposure period up to 100% mortality of adults. The efficacy of the plant material was compared to the control with no treatment. Doses of essential oils and plant dust were recalculated on 5 kg wheat sample, as follows, 3,75 ml/sample of oils, and 37,5 dag/sample of dust. In general, all essential oils exhibited strong insecticidal effect (100% mortality of adults after 24h), with L. nobilis proved most effective in dust form (100% mortality of adults after 7 to 10 days of exposure) under storage conditions. In the control samples mortality of adults was not recorded. Over the five months period, damage on wheat was found to be 30%, while insect population increased up to 190%. No changes in quality of mercantile wheat flour, its colour and flavour were recorded over the plant product treatment, however, each sample retained the scent of the plants tested. On seed wheat, no negative effect on germination and energy of germination was recorded. These aromatic plant products proved to be partial substitutes for synthetic insecticides if applied to smaller stocks of stored wheat, and in order to reduce contamination of food and environment. Key words: Rhyzopertha dominica, aromatic plants, botanical insecticides, Lavandula officinalis, Laurus nobilis, Rosmarinus officinalis, Thymus vulgaris, pest control Introduction Lesser grain borer, Rhyzopertha dominica (F.) is one of the primary pests on different types of stored products, mainly grain. Conventional control measures have been carried out by using insecticides applied directly on grain, or by gas fumigation. However, in silos and storages in Croatia population of the pest has been increasing annualy, due to to the resistance on fumigant doses applied (phosphine, in the first place), and frequent usage of very few fumigants causing no depletion of the ozone layer. There is also growing concern about accumulation of insecticide residues in treated grain with toxic effect on mammals. Insecticide resistence in stored product pests has been observed in many other countries in the world (Shaaya et al., 1997). One of the alternatives to overcome this problem is application of natural products derived from aromatic plants with potential repellent and insecticidal effect on lesser grain borer, and no harmful effect on human environment. Sighamony et al. (1986) have reported favourable results with essential oil of black pepper, Piper nigrum L. applied on lesser grain borer. Neem kernel extract of Azadirachta indica A. juss. Margosan O. and its constituent azadirachtin have also been demonstrated effective against this pest species (Dunkel et al., 1990), (Rahim, 1998). In the last decade a lot of scientists (Weaver et al., 199l; Obeng-Ofori and Hassanali, 1994; Jembere et al., 1995; Bekele et al., 1996; Bekele et al., 1997) have studied insecticity, repellency, and toxicity of Ocimum genus (Ocimun canum Sims., Ocimum kilimandscharicum L, Ocimum suave Wild., Ocimum kenyense L.) on major stored pests including lesser grain borer. The newest studies have proved lethal toxicity of the major components from O. kilimandscharicum and O. kenyense essential oils (Bekele and Hassanali, 2001). In laboratory experiments favourable results in protection from the insect species have been obtained with Rauwolfia serpentina L., Acorus calamus L., Messua ferrea L. and Albizia lebbeck L. applied in the form of dust, ash and acids (Tiwari, 1994). Plant essential oils of the species Cassia angustifolia L. and Pimpinella anisum L. have also been reported to have contact, fumigant, and repellent effect on lesser grain borer (Xu, 1994), as well as cedar oil with repellent and toxic activity against many stored pests including R. dominica (Gebere-Amlak et al., 1997). Essential oils of mint, salvia, oregano, sweet basil, laurel, rosemary, lavander, anise, ZP51 (Labiatae sp.oil), and edible oils of soybean, cotton, rice and palm, with contact and fumigant alternative insecticides have been demonstrated effective against Sitophilus oryzae L., S. zeamais Motsch., Callosobruchus maculatus F., R. dominica, Oryzaephilus surinamensis L., and Sitotroga cerealella Oliv. (Shaaya et al., 1997). Insecticidal activity of some monoterpenes (1,8-cineole and R-(+)-limonen) isolated from essential oils of eucaliptus and citrus has been reported effective against R. dominica under laboratory conditions (Prates et al., 1998). Investigations of the mediterranean plants stated in our study have been carried out so far in France with favourable results in protection of bean from Acanthoscelides obtectus Say. (Regnault-Roger, C. and Hamraoui, A.,1993 a; 1993b; Regnault-Roger, C. et al., 1997). First studies of aromatic plants from Croatian mediterranean area show that plant species of Origanum vulgare L., Laurus nobilis L., Lavandula officinalis Ch., Rosmarinus officinalis L., Thymus vulgaris L. have insecticidal effect on S. granarius L. and A. obtectus if applied in the form of dry ground leaves, stem and flower or as essential oils (Kalinovi et al., 1997). The present study is supplemental to the further investigations of aromatic plant species from this area on growing population of resistant R. dominica as one of the major pests on stored grain. 2. Materials and methods 2.1. Bioassay Our investigation was conducted under laboratory and storage conditions. Laboratory analyses were carried out in the laboratory of Department of Plant Protection at Agricultural Faculty in Osijek. After the results obtained in vitro, two-year experiments were conducted in storages for grain products at IPK "Oranica" d. o. o. Osijek over the winter season 2000, and summer season 2001. Bioassay plan was based on infestation of mercantile and seed wheat by the species of R. dominica. Prepared material was tested for insecticidal efficacy of the aromatic plants: L. nobilis laurel, L. officinalis lavander, T. vulgaris thyme, R. officinalis rosemary. All species were tested in two forms, as dry ground leaves, flower and stem, and as essential oils. The treatments were compared to the control sample of untreated mercantile and seed wheat. After the analyses completed, mercantile wheat was tested in reological tests for fluor quality. Seed wheat was tested for energy of germination and germination. 2. 2. Plant materials All tested plant species are descended from the island Mali Loinj. In 1999 the plants were collected, air-dried, ground in dust, and maintained under laboratory conditions at the temperature of 25C in black plastic bags. Essential oil products were purchased from "Ireks aroma" d. d. Zagreb. Lavandula officinalis Chaix. (L. angustifolia Mill.) lavander dust (dry ground leaves, flower and stem) oil extract (content: linalyn-acetate, linalool, geraniol, lavandulol, borneol, nerol, bornyl-acetate, cineole, pinene, camphor) Laurus nobilis L. lovor dust (dry ground leaves) oil extract (content: 1,8-cineole, benzaldehyde, piperidine, geraniol) Rosmarinus officinalis L. rosemary dust ( dry ground leaves and stem) oil extract (content: pinene, d-1-camphor, d-1-borneole, bornyl-acetate, cineole) Thymus vulgaris L. - thyme dust (dry ground leaves, flower, stem) oil extract (content: p-cymene, carvacrol, thymol, citral) 2.3. Insect species Test insects were unsexed R. dominica adults of different age reared on wheat under laboratory conditions (temp. 291C, 70% r.h., 14% m.c.). All insects of the species collected during 1999 in silos and storages in Croatia, were progeny strain of the phosphine resistant generations. 2. 4. Control treatments Control treatments were samples of untreated mercantile and seed wheat infested with R. dominica. 2.5. Biological materials The study was conducted on mercantile wheat (mixture of sorts) with 12,5% m.c. in silos of IPK "Croatia" Osijek, and on seed wheat with 12% m.c. ("}itarka" cultivar, I sort reproduction, untreated seed), at Institute of Agriculture Osijek. 2.6.a Preliminary laboratory analyses Mercantile wheat seeds were placed into Petri dish (7 cm in diameter). One dish was one sample. Each sample contained 20 wheat seeds (cca 0,5 g) (12,5% m.c.). The prepared media was infested with R. dominica reared in the laboratory of Departmant of Plant Protection. Each sample was infested with 20 insects. After infestation completed, plant products were applied to the samples. Each sample was treated with dust/wheat mixture (dose of 0,01g), and with oils (dose of 0,01ml) applied by dripping on the Whatman No. 1 filter paper disc. All samples were covered with Petri dish lids. Samples with the applied treatments were set up in 8 replications, meaning that we had 80 samples for both applied forms (oil and dust). The experiment was established under controlled laboratory conditions (temperature 235 24C; r. h. 70%, in dark). Insecticidal activity was done by evaluation of test insect mortality with lens and stereomicroscope. The samples were observed daily, over the exposure period up to 100% mortality, and compared to the control with no treatment. Similarly, tests on seed wheat were set up under the same laboratory conditions. After the positive results from preliminary tests, recalculation of quality and doses for treatment application was made on the basis of 5 kg wheat sample, as follows, 3,75 ml/sample of oils, and 37,5 dag/sample of dust. 2.6.b Damages and the number of R. dominica population 100 pre-weighed wheat seeds were placed into the glass jars (250 ml) and infested with test insects: 10 adults per jar (sample). Glass jars were covered with fine silky mesh. For each test insect 10 replications were set up. Over the 5 months period, the samples were maintained at 291C, and r. h. of 705%. The experiment was observed after 30 days period. Population of the pests was determined. Fractions of undamaged and damaged grain, and grain dust were separated and weighed. 2.6.c Qualitative analyses of tested mercantile wheat Analysis of mercantile wheat was carried out in the laboratory for flour quality at "Belje" MPI, Beli Manastir according to the standard technological methods by using farinograph, ekstenzograph, and amilograph, with determination of organoleptic properties: scent, flavour and colour. Reological tests were done on 60% laboratory flour (after cleaning, wheat samples were prepared for grinding by soaking in two phases: I soaking in 13,5% m.c. and growing stale for 24 h; II phase soaking in 14% m.c. h before grinding). The reological tests were carried out after 5 days. Dough properties were determined by farinograph from flour obtained over the grinding proces (water absorption, dough progress, dough stability, soften level, quality No., and quality group). Dough properties over the elasticity process were determined by ekstenzograph (energy, resistance, elasticity, and their relation). Activity of alpha-amilase in wheat flour was determined by amilograph. Samples of wheat (cca 100) broken in laboratory mixer, and poured with heated water were prepared for organoleptic analysis for scent and flavour. 2.6.d Germination and energy of germination on seed wheat Analysis of seed wheat was done in the laboratory at the Department of Plant Protection according to the standard method of germination and energy of germination. Whatman No. 1 filter paper was used as a media. The experiment was established in 4 replications for 4 treatments and the control. On a wet filter paper 100 wheat seeds were placed per sample. The samples were first kept at the temperature of 5-6C for 7 days, and maintained at 20C afterwards. Energy of germination, and germination were determined after 4 and 7 days, respectively. 2.7. Analyses under storage conditions After the laboratory analyses completed, we set up an experiment in a storage for seed products at IPK Osijek "Oranica" d. o. o. in winter season (November, December 2000). Samples with wheat media (mercantile and seed) were weighed to 5 kg and packed into two-layered paper bags. Before sample infestation, test insects were separated in "mesh bags" (made from silky mesh, with mesh openings of 0,3 mm in diameter), to make check up easier. In each sample, 10 mesh bags with 10 adults, and 10 wheat seeds were placed. Dose for dust treatments was 37,5 dag/sample, and dose with oil extract was 3,75 ml/sample. Dust products were mixed with wheat. Oil extracts were applied by dripping on porous impregnated strips, which were incorporated in the samples prepared. All bags were sealed with adhesive tapes. Control treatment was infested wheat with no application.The packed samples were placed on wooden palettes and maintained under storage conditions ( Temperature of 5-7 C, r.h. 67 78%). The experiment was established in 4 replications. In total, 40 samples were set up for all the treatments in two forms (dust and oil), applied on two types of media (seed and mercantile wheat). The samples were observed daily up to 100% mortality of test insects, as well as the temperature and r. h. The samples were checked by lens on light, heated background. Similarly, we set up an experiment in summer storage season (Jun, 2001), but the temperature was 16-26C, with r. h. of 69-79%. 2.8. Data analysis The experiment was established by non-choice test in 8 replications (laboratory tests) and in 4 replications (storage tests).Mortality results were shown as timing series calculated from means of daily mortalities for all the treatments tested. For each mean SE was counted. Analysis of the results was employed by multi-factorial analysis of variance (ANOVA) for every day over the exposure period. LSD test was used to compare significant differences among the treatments. Data processing was conducted by "The SAS System for Windows 95" according to GLM ANOVA model (general linear model). The results of germination analysis and the results of analysis of energy of germination on seed wheat were conducted by one-way analysis of variance (ANOVA). 3. Results 3.1. Results of laboratory analyses Positive results from preliminary tests proved the hypothesis of insecticidal activity of the four plant species, which was the ground for further analyses under storage conditions. Possible damages without introducing protective measures over the 5 months infestation with R. dominica were estimated to be more than 30% under laboratory conditions, with the population increase of up to 190% (Fig. 1, 2). 3.2. Results of analyses in winter season Analysis of variance proved very high significant differences (P<0,001) among the plant species tested, and their forms over the exposure period of 12 days. Significant differences were compared by using LSD test for the plant species, and their forms. Table 1 shows timing series of plant species efficacy over the exposure period, with the values expressed in % of average daily mortality of the test insects. Means were counted from 4 replications, with SE calculated for each, and significant differences of means by LSD test (a,b,c,d statistic significance for level P<0,05). In the control treatment without application no mortality was recorded (0%). The shortest exposure for 100% mortality od R. dominica was obtained by L. nobilis essential oil (24 h), followed by L. officinalis and R. officinalis, with 100% mortality and exposure period of 48 h, and T. vulgaris with the same effect obtained after 72 h. Intensity of insecticidal activity of the plant species tested was not statistically different, proving similar efficacy against R. dominica in the form of essential oil over the winter storage season. Treatments with dust required considerably longer exposure. The shortest exposure (after 9 days) with 100% mortality was obtained by L nobilis dust, followed by the remaining three species with 100% mortality in 11 12 days. During the first 7 days no statistical differences were recorded among the plant species, however, 8 day after exposure L. nobilis appeared more effective than other species tested. 3.3. Results of analyses in summer season Similarly to the results obtained over the winter season, differences among the treatments and forms applied also appeared very highly significant in summer storage period. After 24 h exposure, four plant species in the form of oil obtained 100% mortality, as the dust applications in first five days of exposure exhibited equal intensity of insecticidal activity, with L. nobilis having more intensive increase, and the shortest exposure of 8 days (Table 2). 3.4. Results of qualitative analyses of tested mercantile wheat Results of the farinograph analyses show that dust and oil treatments of the plants tested (L. officinalis, L. nobilis, R. officinalis and T. vulgaris) did not have negative effect on dough properties (Table 3). Results of the ekstenzograph analyses (Table 4) show that the treatments did not exhibit negative effect on the dough quality during the elasticity process. Activity of alpha-amilase in the flour samples tested did not show differences in comparison to the control, which means that no negative effect on gluten quality was recorded (Table 5). Determintaion of colour, scent and flavour was conducted in the laboratory by organoleptic method on ground mercantile wheat mixed with water. Each sample retained the scent of the plants tested, without changes in flavour and colour. 3. 5. Results of qualitative analyses of tested seed wheat Energy of germination and germination were tested on seed wheat (cultivar "}itarka", I sort reproduction). Results by ANOVA of energy of germination show no significant differences among the treatments and the control(Table 6). Also, no significant differences were recorded in germination of treated seed wheat and the control (Table 7). 4. Discussion The results obtained under storage and laboratory conditions on mercantile and seed wheat infested by R. dominica proved insecticidal efficacy of aromatic plants of this area: lavander, laurel, rosemary, and thyme applied in the form of oil extract and dust, and compared to the control with no treatment. Insecticidal property of these plants was also reported by Regnault-Roger and Hamraoui, 1993a; 1993b; Regnault-Roger et al., 1993, examining mortality of A. obtectus Say. treated wih essential oils and dust of the above plants. The results of preliminary laboratory analyses showed the differences among the plants tested on mercantile and seed wheat over the 8 day exposure as highly siginficant (P<0,001), as well as the differences among the forms applied (P<0,001), which proved mortality of R. dominica as the result of insecticidal activity. On mercantile wheat, all these oil extracts showed 100% mortality of R. dominica at the dosage of 0,01 ml/5 g wheat in 24 h, but in the control no mortality was recorded. Similar results with oil extracts were obtained on seed wheat. This proved high susceptability of lesser grain borer to the treatment in form of the essential oil extracts. Dust applications showed considerably slower insecticidal activity against R. dominica in comparison to essential oils which is indicated by high significant differences (P<0,001) among the application forms tested. On mercantile wheat, the shortest exposure period (dose of 0.01 g/5 g wheat) for 100% mortality of R. dominica was 15 days, obtained with the plants of L. nobilis and R. officinalis. On seed wheat, similar results were obtained after 13 days with dust of L. nobilis. These results indicate that laurel dust possesses stronger insecticidal activity for control of R. dominica than dust of the remaining three plant species. This was proved by investigations of other scientists (Obeng-Ofori et al., 1994, Jembere et al., 1995) who recorded significant difference among essential oils and dust of O. kilimandscharicum in control of the pest species. The authors emphasized that oils in 48 h obtained 100% mortality, while dust of the plant did not exhibit insecticity. However, some authors (Bekele et al., 1997) emphasized that dry leaves and essential oil of O. kenyense could be applied effectively against lesser grain borer. Over the 5 months experiment with samples without plant product applications, R. dominica damaged 30% of wheat and increased population to 190%, indicating that without adequate protection measures entire stored wheat mass could be completely damaged in a year. Analyses in winter season of storages showed the differences among the treatments tested on mercantile and seed wheat over the exposure period of 12 days as highly significant (P<0,001), as well as the differences among the forms of application (P<0,001). By application of oil extract of L. nobilis on mercantile and seed wheat, 100% mortality of R. dominica was obtained with the shortest exposure of 24 h. Most effective plant species in dust form was L. nobilis (100% mortality in 4 days on mercantile, and 10 days on seed wheat). In experimental analyses over the summer storage period, the differences among the treatments tested on mercantile wheat were again highly significant (P<0,001), but exposure time was on average 2 days shorter than in winter storage period. Oil extracts of each plant tested on mercantile and seed wheat obtained 100% mortality of R. dominica in 24 h, whereas laurel again required the shortest exposure (8 days). The results of efficacy of the plant species for winter and summer season under storage conditions, show that oil extract forms exhibited considerably faster activity against lesser grain borer than plant dust due to the higher concentrations of oil vapours. In summer season 100% mortality was obtained by shorter exposure time than in winter season due to the high temperatures (16-26C), whereas the plant species exhibited more intensive insecticidal, and particularly fumigant effect. From the available data, application of plant products under storage conditions have not been entirely investigated. There are data (Xu, 1994) about effective control of R. dominica by using combination of oil of C. angustifolia and malation that provide repellent effect over the 8 months period under simulated storage conditions. To understand fully the necessity of plant product application in mercantile and seed wheat protection, it was necessary to analyse quality of the samples tested, as tested plant products can be applied commercially if there are no differences in comparison to the control samples without application. Qualitative flour analyses of tested mercantile wheat did not prove differences for both forms of tested plant treatmants compared to the control without application. No changes were recorded in colour or flavour of flour tested, but all samples retained intensive scent of the aromatic plant species applied. This suggests that treated mercantile wheat should be thouroughly cleaned from the remaining aromatic plant dust in the phase of first cleaning, and before grinding, then in combination with active aeration the remaining scents could be removed. After that, thoroughly washing, drying, conditioning and the main wheat cleaning should be done. Further investigations regarding the analyses of organoleptic properties (especially scents) should be focused on qualitative analysis of bakery products (bred, rolls, paste etc.) made from flour of mercantile wheat treated with plant products. Qualitative analysis of seed wheat did not prove negative effect on energy of germination and germination of the cultivar "}itarka" indicating that these plant products could be applied commercially in seed wheat storaging. Similar results were reported in the study of Obeng-Ofori (1995) who by application of vegetable oils of cotton, soybean, maize, peanuts and palm against R. dominica on stored seed maize under laboratory conditions proved no negative effect on maize germination. Our investigations (Kalinovi et al., 1997) also proved that tested plant products applied on seed wheat, and infested by grain weevil, did not exhibit negative effect on germination. From complete results obtained it can be concluded that plant products on the basis of L. officinalis, L. nobilis, R. officinalis, and T. vulgaris can be applied as an alternative in stored mercantile, and especially seed wheat protection against R. dominica on small-scale family farms so as to decrease application of synthetic insecticides, and contamination of food and environment. Acknowledgments This study was funded by Ministry of Science of Republic of Croatia. We are grateful to the employees of IPK "Oranica" d. o. o. Osijek for providing storage facilities, and to the laboratory stuff of "Belje" MPI d. d. Osijek for mercantile wheat analyses. We also thank "Ireks aroma" d. o. o. Zagreb for their assistance in providing necessary essential oil extracts. References Bekele, A. J., Obeng-Ofori, D. and Hassanali, A., 1996. Evalution of Ocimum suave (Willd) as a source of repellents, toxicants and protectants in storage against three stored product insect pests. International Journal of Pest Management 42, 139-142. Bekele, A. J., Obeng-Ofori, D. and Hassanali, A., 1997). Evaluation of Ocimum kenyense (Ayobangira) as source of repellents, toxicants and protectants in storage against three major stored product insect pests. Journal of Applied Entomology 121, 169-173. Bekele, A. J., and Hassanali, A., 2001. Blend effects in the toxicity of the essential oil constituents of Ocimum kilimandscharicum and Ocimum kenyense (Labiateae) on two post-harvest pests. Phytochemistry 57, 385-391. Dunkel, F., Weaver, D., Puyvelde, L., Cusker, J. L. and Serugendo, A., 1990. Population supression effects of Rwandan medicinal plant, Tetradenia riparia (Hochst.) Codd (Lamiaceae) on stored grain and bean insects. Proc. 5th Int. Conf. on Stored-prod. Protection, Bordeaux, 1990 Vol. III: 1609-1618. El-Nahal, A. K. M., Schmidt, G. H. and Risha, E. M., 1989. Vapours of Acorus calamus oil-a space treatment for stored-product insects. Journal of Stored Products Research 25, 217-223. Gebre-Amlak, A. B., Phillips, T. W., Cuperus, G. W., Anderson, S. A., Eisenbraun, E. J. and Payne, K., 1997). Repellency and toxicity of cedar oils to stored product insect pests. 1997 ESA Annual Meeting, Madison, USA. Jembere, B., Obeng-Ofori, D., Hassanali, A. and Nyamasyo, G. N. N., 1995). Products derived from the leaves of Ocimum kilimandscharicum (Labiatae) as post-harvest protectants against the infestation of three major stored product insect pests. Bulletin of Entomological Research 85, 361-367. Kalinovi, I., Martin i, J., Rozman, V. and Guberac, V., 1997. Insecticidal activity of substances of plant origin against stored product insects. Ochrana Rostlina 33, 135-142. Obeng-Ofori, D., Adgeh, B. J. and Hassanali, A., 1994). Products derived from the leaves of Ocimum kilimandscharicum as postharvest grain protectants. The 6th International Working Conference on Stored-product Protection. Canberra, Australia. Conference handbook: 85. Prates, H. T., Santos, J. P., Waquil, J. M., Fabris, J. D., Oliveira, A. B. and Foster, J. E., 1998. Insecticidal activity of monoterpenes against Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst). Journal of Stored Products Research 34, 243-249. Rahim, M., 1998. Biological activity of azadirachtin-enriched neem kernel extracts against Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) in wheat. Journal of Stored Products Research 34, 123-128. Regnault-Roger, C., Hamraoui, A., Holeman, M., Theron, E. and Pinel, R., 1993. Insecticidal effect of essential oils from Mediterranean plants upon Acathoscelides obtectus Say. (Coleoptera, Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.). Journal of Chemical Ecology 19, 1233-1244. Regnault-Roger, C. and Hamraoui, A., 1993 a. Efficiency of plants from south of France used as traditional protectants of Phaseolus vulgaris L. against its Bruchid, Acanthoscelides obtectus (Say.). Journal of Stored Products Research 29, 259-264. Regnault-Roger, C. and Hamraoui, A., 1993 b. Effects of essential oils from aromatic plants on Acanthoscelides obtectus Say., pest of kidney bean (Phaseoulus vulgaris L.). Acta Botanica Gallica 140, 217-222. Shaaya, E., Kostjukovski, M., Eilberg, J. and Sukprakarn, C., 1997. Plant oils as fumigants and contact insecticides for the control of stored-product insects. Journal of Stored Products Research 33, 7-15. Sighamony, S., Anees, I., Chandrakala, T. S. and Osmani, Z., 1986. Efficacy of certain indigenous plant products as grain protectants against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). Journal of Stored Products Research 22, 21-23. Tiwari, S.N., 1994. Efficacy of some plant products as grain protectants against Rhyzopertha dominica (F.) (Coleoptera, Bostrichidae). International Journal of Pest Management 40, 94-97. Weaver, D. K., Dunkel, F. V., Ntezurubanca, L., Jackson, L. L. and Stock, D. T., 1991. The efficacy of linalool, a major component of freshly-milled Ocimum canum Sims (Lamiaceae), for protection against postharvest demage by certain stored product Coleoptera. Journal of Stored Products Research 27, 213-220. Xu, H., 1994). Biological activities of essential oils from plants against stored- product insects, and analysis of their toxic components. The 6th International Working Conference on Stored-product Protection. Canberra, Australia. Conference handbook: 88. Fig. 1. Damage caused by R. dominica in untreated wheat during 5 months  EMBED Excel.Chart.8 \s  Fig. 2. R. dominica population in untreated wheat during 5 months  EMBED Excel.Chart.8 \s  Table 1 Insecticidal activity of plant treatments against R. dominica in summer season (LSD test) Rhyzopertha dominica ExpositionMortality %Oils treatments Lavandula officinalis Laurus nobilis Rosmarinus officinalis Thymus vulgaris  EMBED Equation.3  EMBED Equation.3 SE EMBED Equation.3  EMBED Equation.3 SE EMBED Equation.3  EMBED Equation.3 SE EMBED Equation.3  EMBED Equation.3 SE1. day 95,0 EMBED Equation.3 2,9a100,0 EMBED Equation.3 0,0a 97,5 EMBED Equation.3 2,5a 92,5 EMBED Equation.3 4,8a2. day100,0 EMBED Equation.3 0,0a100,0 EMBED Equation.3 0,0a 97,5 EMBED Equation.3 2,5a3. day100,0 EMBED Equation.3 0,0aDust treatments EMBED Equation.3  EMBED Equation.3 SE EMBED Equation.3  EMBED Equation.3 SE EMBED Equation.3  EMBED Equation.3 SE EMBED Equation.3  EMBED Equation.3 SE1. day 12,5 EMBED Equation.3 2,5a 20,0 EMBED Equation.3 4,1a 15,0 EMBED Equation.3 2,9a 15,0 EMBED Equation.3 5,0a2. day 17,5 EMBED Equation.3 2,5a 25,0 EMBED Equation.3 2,9a 22,5 EMBED Equation.3 2,5a 22,5 EMBED Equation.3 2,5a3. day 27,5 EMBED Equation.3 4,8a 37,5 EMBED Equation.3 4,8a 32,5 EMBED Equation.3 2,5a 27,5 EMBED Equation.3 4,8a4. day 35,0 EMBED Equation.3 5,0a 40,0 EMBED Equation.3 4,1a 37,5 EMBED Equation.3 2,5a 35,0 EMBED Equation.3 5,0a5. day 42,5 EMBED Equation.3 4,8a 45,0 EMBED Equation.3 6,5a 45,0 EMBED Equation.3 2,9a 45,0 EMBED Equation.3 6,5a6. day 52,5 EMBED Equation.3 4,8a 57,5 EMBED Equation.3 4,8a 55,0 EMBED Equation.3 5,0a 47,5 EMBED Equation.3 6,3a7. day 57,5 EMBED Equation.3 4,8a 70,0 EMBED Equation.3 4,1a 60,0 EMBED Equation.3 4,1a 52,5 EMBED Equation.3 6,3a8. day 65,0 EMBED Equation.3 2,9b 90,0 EMBED Equation.3 4,1a 72,5 EMBED Equation.3 2,5b 62,5 EMBED Equation.3 2,5b9. day 72,5 EMBED Equation.3 2,5c100,0 EMBED Equation.3 0,0a 85,0 EMBED Equation.3 2,9b 75,0 EMBED Equation.3 2,9c10. day 90,0 EMBED Equation.3 4,1b 95,0 EMBED Equation.3 2,9a 82,5 EMBED Equation.3 2,5c11. day100,0 EMBED Equation.3 0,0a100,0 EMBED Equation.3 0,0a 95,0 EMBED Equation.3 2,9b12. day100,0 EMBED Equation.3 0,0a* meas followed by same letter in superscript within each row are not significantly different (p<0,05) Table 2 Insecticidal activity of plant treatments against R. dominica in winter season (LSD test) Rhyzopertha dominica F. ExpositionMortality%Oil treatments Lavandula officinalis Laurus nobilis Rosmarinus officinalis Thymus vulgaris  EMBED Equation.3  EMBED Equation.3 SE EMBED Equation.3  EMBED Equation.3 SE EMBED Equation.3  EMBED Equation.3 SE EMBED Equation.3  EMBED Equation.3 SE1. day100,0 EMBED Equation.3 0,0a100,0 EMBED Equation.3 0,0a100,0 EMBED Equation.3 0,0a100,0 EMBED Equation.3 0,0aDust treatments EMBED Equation.3  EMBED Equation.3 SE EMBED Equation.3  EMBED Equation.3 SE EMBED Equation.3  EMBED Equation.3 SE EMBED Equation.3  EMBED Equation.3 SE1. day 20,0 EMBED Equation.3 4,1a 22,5 EMBED Equation.3 4,8a 15,0 EMBED Equation.3 2,9a 17,5 EMBED Equation.3 4,8a2. day 22,5 EMBED Equation.3 4,8a 30,0 EMBED Equation.3 4,1a 22,5 EMBED Equation.3 2,5a 25,0 EMBED Equation.3 2,9a3. day 30,0 EMBED Equation.3 4,0a 42,5 EMBED Equation.3 4,8a 32,5 EMBED Equation.3 2,5a 37,5 EMBED Equation.3 4,8a4. day 47,5 EMBED Equation.3 2,5a 47,5 EMBED Equation.3 7,5a 45,0 EMBED Equation.3 2,9a 47,5 EMBED Equation.3 4,8a5. day 57,5 EMBED Equation.3 2,5a 57,5 EMBED Equation.3 4,8a 55,0 EMBED Equation.3 5,0a 57,5 EMBED Equation.3 4,8a6. day 67,5 EMBED Equation.3 2,5b 87,5 EMBED Equation.3 2,5a 72,5 EMBED Equation.3 2,5b 67,5 EMBED Equation.3 4,8b7. day 82,5 EMBED Equation.3 2,5b 97,5 EMBED Equation.3 2,5a 85,0 EMBED Equation.3 2,9b 77,5 EMBED Equation.3 4,8b8. day 90,0 EMBED Equation.3 4,1b100,0 EMBED Equation.3 0,0a 95,0 EMBED Equation.3 2,9b 90,0 EMBED Equation.3 4,1b9. day100,0 EMBED Equation.3 0,0a100,0 EMBED Equation.3 0,0a 95,0 EMBED Equation.3 2,9b10. day100,0 EMBED Equation.3 0,0a* means followed by same letter in superscript within each row are not significantly different (p<0,05) Table 3 Results of farinograph  Table 4 Results of ekstenzograph on tested mercantile wheat  Table 5 Results of amilograph and flour quantity on tested mercantile wheat   Table 6 Results of energy of germination on tested seed wheat Table 7 Results of germination on tested seed wheat  ( Corresponding author. E-mail address:  HYPERLINK "mailto:kirma@suncokret.pfos.hr" kirma@suncokret.pfos.hr (Irma Kalinovi)  "@B`b|~Ynt      FX -p%8AR]>*\]6]6 6\] 6CJ\]6CJH*\] j*0J\H*\\565O  """"@#$a$$`a$$a$&(=>FX\gpn@QRdh~Lb> H S a n o q y ""@#V#[#m###,$;$$$$$A%S%\%]%%%%%& 'c'n'o''*(,()P)l*w*>*5\ 56\]6]6]@###,$F$_$$$$A%]%%%%%%&& ' 'q'r'''))N)P)$a$$ & Fa$$ & Fa$P)*,).*.+./ /A/B/0,1-1d1e123j44555566,8-8T8U89$a$w*+./ /B/-1e156-8U8*>>>>>>>1A2A3A?AcAdAwBBB'C*]]6H*5\6]>*>*\9_:V;<<<=)>*>=>>>1A2A3A>A?AcAdABB&C'C%DE%I&IPIQI!K"KbKbKcKzN{NNN RRRRQS7TyUVQ[Y\s^`bQcdhTm2o3oCoDopp$a$[[\\ ]O]P]|]]]]"^,^^ ___B`E`F`^b_bbbbbjjn-n1n*]6]]6Tppqrst~uYv|wdyz{|}~vD7'()*+s$a$ h^h` $h^h`a$$da$M|}5}<}F}H}Q}k}}}(~:~S~k~8LvCDҀ'()+DOstԄՄ,8Yno{…¾56 CJOJQJ j UjA@ CJUVj@ CJUV jU65\]5CJCJH*56CJCJHԄKWXYnop{d$qq$If]q^qa$Z$$Ifl4 04 la< $$Ifa$`H $$Ifa$$Ifm$$Ifl40l804 la<…ÅڅۅL}$If $$Ifa$$Ifm$$Ifl40 04 la< PYSJJJJ $$Ifa$$If$$Ifl4r  T04 la< 3457JKLMPQdefh{|}~ԆՆֆ׆چۆصا؜ؓ j(EHUH* jS&EHU56 j$EHU j"EHU j!EHU j?EHU jEHU jEHU jEHUj'H5 UVmHnHu jU j+EHUj8(H5 UVmHnHu:܆A[<RIIII $$Ifa$ $$Ifa$$$Ifl4r  T04 la<%&9:;<?@NObcdehipq҇ӇԇՇ؇هۇ܇ 3 j5EHU j3EHUj8(H5 UVmHnHu CJOJQJ5 j#2EHU js0EHU j.EHU j-EHU jc+EHUH* jU j)EHUj'H5 UVmHnHu=ABIjk\SJJJJ $$Ifa$ $$Ifa$$$Iflr 8T04 la<ڇ\SJJJJ $$Ifa$ $$Ifa$$$Iflr 8T04 la<ڇۇ܇\HVM $$Ifa$$If$$Iflr 8T04 la<P $$Ifa$$Ifm$$Ifl40`804 la<3457JKLMPQdefh{|}~ԈՈֈ׈ڈۈ%&9:;<?@صخإ؞ؗ j GEHU j[EEHU jCEHUH* jAEHU jK@EHU jq>EHU j<EHU j:EHU j79EHUj'H5 UVmHnHu jU j]7EHUj8(H5 UVmHnHu;܈AY<PGGGG $$Ifa$ $$Ifa$$$Ifl4br  T04 la<ABIkЉ\<SJJJJ $$Ifa$ $$Ifa$$$Iflr 8T04 la<@OPcdefijqrȉɉʉˉΉωމ߉!"5678;<CDWXYZ]^mn jTEHU jREHU j+QEHU j{OEHU jMEHU jLEHU jkJEHUH* jHEHUj'H5 UVmHnHu jUDЉщ؉=_`g\<SJJJJ\<S $$Ifa$ $$Ifa$$$Iflr 8T04 la<ĊŊƊNJʊˊҊӊ234589?@STUVYZabuvwx{| jcEHU j bEHU j[`EHU j^EHU j\EHU jK[EHU jYEHU jWEHUj'H5 UVmHnHuH* jU j;VEHUCg̊:S<J $$Ifa$$$Iflr 8T04 la< $$Ifa$:[}~ɋ S<J $$Ifa$$$Iflr 8T04 la< $$Ifa$‹ËċNjȋ΋ϋ ./0145<=PQRSVW^_rstuxyČŌ̌͌ j;qEHU joEHU jmEHU j+lEHU j{jEHU jhEHU jgEHU jkeEHUj'H5 UVmHnHu jUH*E 6Xz\@SJJJJ\@S $$Ifa$ $$Ifa$$$Iflr 8T04 la<ƌ ,-4VwS<J $$Ifa$$$Iflr 8T04 la< $$Ifa$ $%&'*+:;NOPQTU[\opqruv}~ʍˍލߍ jkEHU j~EHU j }EHU j[{EHU jyEHU jwEHU jKvEHU jtEHUj'H5 UVmHnHuH* jU jrEHUCwč +SJ $$Ifa$$$Iflr 8T04 la< $$Ifa$#$%&)*9:MNOPST[\opqruv}~ĎŎǎ5p|͏Ϗޏߏ1234GHIK jEHUj8(H5 UVmHnHu565 CJOJQJ6CJ jۈEHU j+EHU j{EHU j˃EHU jEHUj'H5 UVmHnHu jUH*?+,4UVw\SJJJJ\S $$Ifa$ $$Ifa$$$Iflr 8T04 la<Ǝǎ23SMMM`$$Iflr 8T04 la< $$Ifa$345>͏`v $$Ifa$$qq$If]q^qa$X$$Ifl4<l04 la<$L$If^`La$` ͏ΏϏޏD $$Ifa$ $$Ifa$m$$Ifl40<l L04 la<ޏߏ 1L}$If $$Ifa$$Ifm$$Ifl40< L04 la<123dƐ[ULLLL $$Ifa$$If$$Ifl4r H< T04 la<K^_`adexyz|ÐƐǐڐېܐސ%&9:;<?@FGZ[\]ص jEHU jcEHUH* jEHU56 jEHU j)EHU jyEHU jEHU jEHU jEHUj8(H5 UVmHnHu jU jeEHUj'H5 UVmHnHu: Ab[0RIIII $$Ifa$ $$Ifa$$$Ifl4r H< T04 la<]`agh{|}~‘Ñđőȑɑܑݑޑ $%&'*+>?@BUVWXij}~̷̛̩ jEHU jEHU jaEHU jEHU jפEHU jEHU jMEHU jsEHUj8(H5 UVmHnHu CJOJQJ5 jÝEHUj'H5 UVmHnHu jUH*9\HSJ $$Ifa$ $$Ifa$$$Iflr H< T04 la<ȑ*[ $$Ifa$$Ifk$$Ifl40<` L04 la<[\cǒ[4RIIII $$Ifa$ $$Ifa$$$Ifl4r H< T04 la<~’Œƒ̒͒ +,-.1289LMNORSYZmnopst jEHU jkEHU jEHU j EHU j[EHU jEHU jEHU jKEHUj'H5 UVmHnHuH* jU jEHUC3Tu\4SJJJJ $$Ifa$ $$Ifa$$$Iflr H< T04 la<uv} \4SJJJJ\4S $$Ifa$ $$Ifa$$$Iflr H< T04 la<œƓٓړۓܓߓ$%&'*+12EFGHKLRSfghilmstҔӔ jEHU jEHU j;EHU jEHU jEHU j+EHU j{EHU j˼EHUj'H5 UVmHnHu jUH*E ,MnڔS4J $$Ifa$$$Iflr H< T04 la< $$Ifa$ӔԔՔؔٔߔ*+>?@ADEKL_`abeflm˕͕̕Εѕҕٕؕ jEHU jEHU jkEHU jEHU j EHU j[EHU jEHU jEHUj'H5 UVmHnHuH* jU jKEHUCڔ$FgS4J $$Ifa$$$Iflr H< T04 la< $$Ifa$ӕ67>\4SJJJJ\4S $$Ifa$ $$Ifa$$$Iflr H< T04 la< ./0145DEXYZ[^_efyz{|–Жі '( jKEHU jEHU jEHU j;EHU jEHU jEHU j+EHU j{EHUj'H5 UVmHnHu jUH*E>`ÖĖ˖SJ $$Ifa$$$Iflr H< T04 la< $$Ifa$/089:;\SJ $$Ifa$$$Iflr H< T04 la< $$Ifa$()*-.@ATUVWZ[]ɗʗ˗+,|}~#$PQRij&( 0J6]j6U]j6U]6] j*0J5\ jU jU jU j[UCJ jEHUj'H5 UVmHnHuH* jU jEHU*\]ɗʗ˗ԗ\VVVVVVVV`$$Iflr H< T04 la< +-./7{|~Ș$&($a$`,1h. A!"#$% ,1h. A!"#$% ,1h. A!"#$% ,1h. A!"#$% $1h. A!"#$% $1h. A!"#$% $1h. A!"#$% $1h. A!"#$% $1h. A!"#$% `!x "{ޗ6:`]/F xڭ[[l.rkɑ\-G~(-MbNQʐ ԉLX+@z(7`@VR?$((Z)(p8 Qi "읝%\>حvޙ913>173!&8S +GPʡ't-/Uį{}]/ի><@BfJuvPoe% !EuBf5P{trVR2sy}Lf>:}qn&=DN}CSXȉLҕdR&;35^5N#eI:Au:^b]TdLaCjlv^=X*q紝KI5yh*@Wįp*<*P~p =paoy&=^1pk_$.ƁOXʓ> 4('^GNMM.:C>G`cEcMyK__!#Wd>";T[ %CXp YJaue1Ȼ8=*b͋N\YC +]p*V yx'm}>a^d1y'y"ռY ΛW=nC%\x{JLݣ tn!O݁8ͤf2 'Mnזz:TBd`=KlR&)^6he }iuҎi!HRd[5|ĭ8oH7$ΛWm,QM{C λ^ڡOY RnbID&{:z_r[e_mN3ߣ!պC_g{?>04!t42m,+k`9˚`p">2$YTEE8q9o*9b:R1u0o+@c6+818K@\cD %q,Ʊ\" %r%V9K<a9*r +-%TyKU(^^֛\4?445/oz^$Mk72eq,n,#687Ig>- qH[ypWkUn]7D̓ȃ% qn`Ix5-Eu\ɤOXk/U??T7r%_\~2hkXZuHƊM +6AVlY b+:Bsمt4(˚+vYnڿxHCz.7n?+209Fˆ' n2b+sL87(| q'q"q@;TyEG]9>ٱzg3"/SV\{?q}Emtӹ=;m[x7CX|BaxT6|4AMY{4>^+5A[| 0j30j30vpLf]m/: ,^ty/ş޺݇ƭΝBu箃/2Nvt; 5 Av-X,X6@y[A.l]ٺ u`g˃88~q**gI`^&˦{'nb\%ikk={YYY)pW9T_ ~%@W_ ~|zŧtv= tC>=\-ⶼV*=?(r8U3F7rRz&鸵 $M215P?ebOGMfa51GfOҚٚ= GY3Y%5-Yn3ȂrCʧwDUlmw@2aYݥ]TZk&lZm4vMv1;\jvݷ/E -49?Ym:._Ӽo1mod#mi;Ymkϸzu3q2u\M,svpLiOg o"xEVo8Byy?d܀YEn`#A;J!KwYE"zy!=ۜpUE73 cZ:JO3w¶'- O<\GDx5o#}SWUިj[Ne[kr+vː]rRp͛]e/^{t9w{JԶWʫ~Kok`!h ΊCE׉t6g P\/6 xڭ[mh[>,ޫ{o,G)ْ&Is+TiLؖ@S shB6J  Xc:P0p!25{+q6 #ļE߅C߾Gv򋟽ŘڧJW^.Q6\n} .m+w!{/۽쥉|j}kkl2弳¬rzX`z<5=z3:Oft^P~MP;zї|Jәd>Dwg~z0d;o[grYΎtme~c=]#MZ=g9xϲ,} }w 2/gy*ƛ`u]\+ ̇[gm6q& }{8dCƍ.K?gcIBDL ^ ]qeAD:jq3~g+q;[I%\! wM8aAě n5x!4 !^qExM81g8,A4S y2"p8g3n n ny<^K|`Ң.&vDtɜON<9B\Wҏ\]Yp>h\oM~noKw.D^pUrF^ wb#+\spLICj) X N!itn=% f+V#L %$Z⊄W$Fq3VKLIX*aU %<nWVگȋ"ORcF>bDm* WJQpHؘ=NtHMtHƣ)J`v]2qX^,S2d'Rܥ{NLm<FVMyaD5i0'ܵs:rR#'Tq᮲0`9aXr°aa9aXr°z4װ|K` s!L{9vfkod;{Ǎci%'=5Eۡ]TYۡUw=܁p pU$O*!SI?l`Y[--(jiQVK q Z;G=<=G9Bzz;7{!eFvocT <6Qŗ)H$V]?aUm_nY)-Gb`RFۚ3w,D/H${p,p9ALM>%yBt93>vOv,9O"pipzA%[~;P/e{TϝNHE#ы\̓|4i|]>])'ǒ&HxMj)򳐁&%X5D^ykV#ԕ|-TÉkIUk@B| a>0Hh$4 G5j08q[>"[Tj4pQj(( Rܢ"ҦRIU#B !j8AS Uqg;[߾{R4~;;s3ff>K!>uQX#{}!-D׷nBG8 <7 vEB$s?""b-@kPxLFD~w;n; )e$KU۵Ԟ_ jjP.2;3^}4}iSKv[_πard_N6Uz4 ?e"]\ؼAzC$ ]ա ]cK1S>>b $PP+yw](lB|>F pjחIa|&F3|8g#03 -?O03~ƿe{vƿog͌73Ռ5gQ5b>Y6sČ5|Ƕ-M9^ϒf>Bo)_um H3[έZ7jvg4 P4: a)kd,fm򙱧I;AV0p-?bmأm@Z6mccw}@빴5۽znjw1sv#h,9b3/*P||Viv 0b" /&I; IEݨs'/> /5 j&W/7 }Mg4ظ7]_I tNĽc\fXsiFW + C_\AxZ_qҟt+ݨq/y 2@ݱ;mK\l@ YL.{`J/"@t蔡ޔi۞S5+y)>}I3ċuF\u))*Y^d::G;B{W|86_:B2Z@oJAr=b=7-Ka=^+F> rL)M3zs hn_ho=|xCΩv[(^!qQ>Cʽ}5zs :cqwθ mY  ?x ߧC|i^{ `J^LzI;y?!{n9ho;ڻڕ/zءtNėz!pơF R&(}5yQ' ݱ; u@b{,ݏw&ܶ?&ܶsG}g=Mm=-3zyp~yZOoff4xR:|Pc8 Nu9 omWc!#bmsy =\-S2to9'KOԇWx'<Þ}A" R(&*H!Gdh&2k'nӢ ^ Y:N=CAݧ`>kzSwNrr5-#lPU 6ȿI_ IK #< kI3o, ?EyO6mm7H[=7E." LE]SG})[1'ͳl. 2g9"'a%Ze,\}7rL gg8+WD^(y)&}G$>?}?_bMC~hWfD GOH⃘;1qZ&GМ{2S;`~;"mEԍ^Ƞ.ԭ*nd%g~~>H~>ͳ`f{nQghG>kŌY~^זk5 f r/0F_)g7}?2(k{Mqqi=VԜ +ޫofm8ɹiOS 쩗hZP{+=G{2Eك3yt.͵"0{J:gp_I |CjRӪ r7T }bX2UݗRjdy?\UE~J=Iz-ϩYW`m߀5ww3WS㟓-^b}2=|Cz?^g^˟) nrM[S˿ۇAub ySU_أa:ĞIZq7_[tE|.bQwe2P0^{yBX˿ZeбVƞb|m)+17NYgXX{@X; ~#^-pr*H-vE\-:bb/F|m6.= -mQNݓ.wه(&d?ʹ{Շ Dd#oN  s *A? ?" fF%ܸHO  3@= fF%ܸHOTHa<]X- x l^߃J]RF_) :W,lpaC%@i$%nLRmnƤe8,ӥmfn#Nf%Нss_{{}D9~sWPP PRjVVRUJiURJŔ"P_}WOª!/(iH팪D쮅LV**ǫBo`*jʥTTrd*/CBꋽ, e^Kz۫x̦zk:dojVI3z6ϑz(mڊP:gpCt@ݹX?3E](^Mb#qK͡^G]F|x`5L33~qJrI/&3 /í~AYG/ A}AO;A$7 .AZЯe~_(g Y~/fW'ok9mo.9t\F2>oN\0Z-#~9Ijplec[)+gzFv<OAv&yBHmM(@A#&lL>[>7L2}w^wX]o>}cf{*f t:qSj U%spu4wJԻү-Q⻠|~ǡm™*{%Y^?K{cf_;L/C}{5(?!-Q$iC=S 9m=n?  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~^"#Root Entry F1|wData WordDocumentf6ObjectPool! F.|w1|w_1088330420 !F F.|w F.|wOle EPRINT<6CompObjb #'()*+,-.012345678: !FMicrosoft Excel ChartBiff8Excel.Chart.89q Oh+'0@Hht Zavod za zastitu biljaVRoMicrosoft Excel@&#?@a4,la AaB! EMF<6xD ?fF, EMF+@XXF\PEMF+"@ @ $@ !@ 0@?@     !" !" !  Rp Arial0&,xw(,F,0\ +pArial0p&@wTw \\@>0 dv% % % % % % % % % % % % % % % % % Rp Arial0&,xw(,C,,0\ +pArial0p&@wTws \\@>0s dv% % % % % % % % % % % " !%   % " !%   % " !%   !!'% %   V0 ;;  ;;% ( V0a;;a;V0a a a  f &% ; 66 6.6 .*66 66 66 6 6 66 66 6r6 rn66 6a6 a% % % " !% % %   !!%   V0 ;  ;;  f V0a;;a;V0a a a % % % " !% % %   !!&% ( 'MM%   V0~'% ( V0% ( 'ss% V0&% ( % ( 's&M% V0&% ( % ( '% V0&% ( 'MM% ( V0'% ( V0% ( &% ( 'M3% V0X]'3f% ( V0% ( &% ( 'f% V0]'% ( V0% ( '% V0&% ( 'MM% ( V0'% ( V0% ( &% ( 'M3% V0 '3f% ( V0 % ( &% ( 'f% V0'% ( V0% ( '% V0&% ( 'MM% ( V0    ,   '% ( V0 '   , ,  % ( &% ( 'M3% V0  1 ,    ,'3f% ( V0  1 ,   , ,% ( &% ( 'f% V0    '% ( V0    % ( '% V0   &% ( 'MM% ( V0 ,   f 1  '% ( V0 a   f f  % ( &% ( 'M3% V0  k f   1 f'3f% ( V0  k f   f f% ( &% ( 'f% V0    '% ( V0    % ( '% V0  % ( % ( &% ; 6;6;6*6*666666n6n6TXX c@?@@X LP0%*@T`.@?@@.LT10%**@T`.R@?@@.LT20%**@T`.s@?@@.sLT30%**@T`.A@?@@.LT40%**@T`.b@?@@.bLT50%**@T`.0@?@@.LT60%**@T`.Q@?@@.QLT70%**@T`.@?@@.LT80%**@T`.?@?@@.?LT90%**@Td@?@@LT100%***@% % % % % % " !% %    T  Rp Arialw ! w ! &0 !T 0 !b<lrXhJ0 !b0lrd0rr6bwaw!1 w !X@wTwT \,w(>0T dv% T|sI@?@@IL\damage %.*C*.*C% ( % % % % " !% %   !!;  6 ;;6T;6T;6T;6T ;6 T ;6 TT h@?@@ h Ld27.07.2001.********T$h@?@@$h Ld27.08.2001.********T'h@?@@'h Ld27.09.2001.********T* h @?@@* h Ld27.10.2001.********T. h @?@@. h Ld27.11.2001.********% % % % % % " !% %   \  TA@?@@ Ldexamine date***C.*.**% % % % " !% %   !!% % " !% %   % % " !% %   % '%   + f % % % " !% % %    g % % % " !% % %    g &% ( '% (   +8 e  Tw v @?@@w v Lhdust of grain**&****% % % " !% % %    g % % % " !% % %    g &% ( '3f% (   +8 e % Tw n 8@?@@w  Lhdamaged grain**?*******% % % " !% % %    g % % % " !% % %    g &% ( '% (   +8 he  Tw V @?@@w VLlundamaged grain****?*******% % % " !% % %    g % % % " !% % %   % % % " !% % %   % ( % ( % " !  " !  ( ( " F4(EMF+*@$??FEMF+@ ObjInfo Workbook hSummaryInformation( DocumentSummaryInformation8H =\pVR Ba=;= R&<X@"1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial#,##0\ "kn";\-#,##0\ "kn"##,##0\ "kn";[Red]\-#,##0\ "kn"$#,##0.00\ "kn";\-#,##0.00\ "kn")$#,##0.00\ "kn";[Red]\-#,##0.00\ "kn">*9_-* #,##0\ "kn"_-;\-* #,##0\ "kn"_-;_-* "-"\ "kn"_-;_-@_->)9_-* #,##0\ _k_n_-;\-* #,##0\ _k_n_-;_-* "-"\ _k_n_-;_-@_-F,A_-* #,##0.00\ "kn"_-;\-* #,##0.00\ "kn"_-;_-* "-"??\ "kn"_-;_-@_-F+A_-* #,##0.00\ _k_n_-;\-* #,##0.00\ _k_n_-;_-* "-"??\ _k_n_-;_-@_-"kn"\ #,##0;\-"kn"\ #,##0#"kn"\ #,##0;[Red]\-"kn"\ #,##0$"kn"\ #,##0.00;\-"kn"\ #,##0.00)$"kn"\ #,##0.00;[Red]\-"kn"\ #,##0.00>9_-"kn"\ * #,##0_-;\-"kn"\ * #,##0_-;_-"kn"\ * "-"_-;_-@_-,'_-* #,##0_-;\-* #,##0_-;_-* "-"_-;_-@_-FA_-"kn"\ * #,##0.00_-;\-"kn"\ * #,##0.00_-;_-"kn"\ * "-"??_-;_-@_-4/_-* #,##0.00_-;\-* #,##0.00_-;_-* "-"??_-;_-@_-                     ` Chart50Sheet1%fSheet2gSheet38z@ 3  @@  4" 27.07.1997.- 27.08.1997. 27.09.1997. 27.10.1997. 27.11.1997.ukupno~iviuginuli zdravo zrnonagri~eno zrno prah zrna alivedead 27.07.2001. 27.08.2001. 27.09.2001. 27.10.2001. 27.11.2001.undamaged grain damaged grain dust of grain jd  =MHP LaserJet 5L4C 4dXXA4DINU"4Z" dXX??3` ^)8` ^)8` ^)8PH`0(  3d 3Q: "undamaged grainQ ;Q ; Q3_ O   MM<4E4 3Q:  damaged grainQ ;Q ; Q3_ O 3f  MM<4E4 3Q:  dust of grainQ ;Q ; Q3_ O   MM<4E4D$% M3O&Q4$% M3O&Q4FAy 3Ow 3 b#M&! M MN43*#M&! M! M MN4%  M3OQ&Q  examine date'4% zMZ3O>&Q damage %'43" :dd 3O % M"3OQ44444e 27.07.2001. 27.07.2001. 27.07.2001. 27.08.2001. 27.08.2001. 27.08.2001. 27.09.2001. 27.09.2001. 27.09.2001. 27.10.2001. 27.10.2001. 27.10.2001. 27.11.2001. 27.11.2001. 27.11.2001.e|?5^ @ffffff@I +?= ףp=?B`"@Zd;O?Q?/$@$C?p= ף?sh|?@?{Gz?e> {G =  dMbP?_*+%MHP LaserJet 5L@g ,,@MSUDHP LaserJet 4L>[`d " d,,??U} } m} $  ########## #"       "   |?5^ @    t@"   ~ Hr@I +?~ L@  Mb@MbX9?~ <@"   B`"@Zd;O?~ Q@  V-?/$?+?"     /$@$C?~ @S@  &1?-?~ ?    ! " $@$@  sh|?@?@V@  jt?~jt?uV?  $@$@" H@H@<  @@" @@!@@<  @X@z@" ؘ@Ћ@@<  @@@"  3@@Ћ@<   @X@@"d,4( $  v  <NMM?p < p]|-  ="|??3` (8` (8` (8` '` '` 'PH 0(  3d7 3Q: ukupnoQ ; Q ; Q3_4E4 3Q: aliveQ ; Q ; Q3_ O 3< f <v2 @"B  ` MM< 4E4 3Q:  deadQ ; Q ; Q3_ O + f +v2 @"B  ` MM< 4E4D$% M3O&Q4$% M3O&Q4FAC| 3OC|3 b#M&!  ̙/f /v @"B  `43*#M&! M! M ̙/f /v @"B  `4%  M3OQ&Q  examine date'4% P@~MZ3O&Q >average No. of adults/samples'43" :dd3O% M"3OQ443_ M NM  MM< 444% M23O&Q23 M  4'4% M23O&Q23 M  4'44eee ~v  <NMM?0Z]H-  =MHP LaserJet 5L4C 4dXXA4DINU"4Z" dXX??3` ^)8` ^)8 ` ^)8 PH0 0(   ?3d 3Q: "undamaged grainQ ;Q ; Q3_ O 2 f 2v2 @"B  ` MM<4E4 3Q:  damaged grainQ ;Q ; Q3_ O 4 f 4v2 @"B  ` MM<4E4 3Q:  dust of grainQ ;Q ; Q3_ O + f +vd @"B  ` MM<4E4D$% M3O&Q4$% M3O& Q4FAzt 3Ozt 3 b#M& !  ̙/f /v @"B  `43*#M& ! M! M ̙/f /v @"B  `4%   M3OQ& Q  examine date'4%  MZ3O>& Q damage %'43" :dd 3O % M"3OQ44444eee xp  6NMM?p]`-  ="??3` Q' ` Q' ` Q' ` Q'PH@0(  3d23 M NM4 3Q:  zdravo zrnoQ ;Q ;Q3_ O  f v2 @"B  ` MM<4E4 3Q:  nagri~eno zrnoQ ;Q ;Q3_ O ̙. f .vd @"B  ` MM<4E4 3Q:  prah zrnaQ ;Q ;Q3_ O  f v2 @"B  ` MM<4E4D $% M3O& Q4$% M3O& Q4FA<A 3O<A 3 b#M&!  31f 1v @"B  `43*#M&! M! M 31f 1v @"B  `4% F r M3Oi&Q  datum pregleda'4% M M3OO&Q  oateenja %'43" :dd 'r3O '% M"3OQ4444% xK M 3Ou& Q z;Sitophilus granarius L. - oateenost zrna tijekom 5 mjeseci'44eee xp  6NMM?*x]` -  =" ??3` ')` ')` ')` ')` ')PHP0(  @п3d23 M NM4 3Q: Q ; Q ; Q3_4E4 3Q:!  ~iviQ ; !!Q ; Q3_ O  f v2 @"B  ` MM< 4E4 3Q:" uginuliQ ; ""Q ; Q3_ O - f -v2 @"B  ` MM< 4E4D $% M3O&Q4$% M3O&Q4FA;3 3O;3 3 b#M&!  31f 1v @"B  `43*#M&! M! M 31f 1v @"B  `4%  lM3Oi&Q  datum pregleda'4% GM3O[(&Q 8prosje an br. imaga/uzorku'43" :dd8+Q3O8+% M"3OQ443_ M NM  MM< 444% ;V$ M 3O&Q ?Sitophilus granarius L. - brojnost populacije tijekom 5 mjeseci'4% M23O&Q23 M  4'4% M23O&Q23 M  4'44eee >@  7 =  dMbP?_*+%" ??rU>@7 =  dMbP?_*+%"??rU>@7 ՜.+,0 PX  Poljoprivredni fakultet Osijek- Sheet1Sheet2Sheet3Chart5  WorksheetsCharts !FMicrosoft Excel ChartBiff8_1088330561!FQ.|wQ.|wOle EPRINT ECompObjb      !XY%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVW[Z\_`abcdefghijklmnopqrstuvwxyz{|}~la > EMFED ?fF, EMF+@XXF\PEMF+"@ @ $@ !@ 0@?@     !" !" !  Rp ArialB0&,xw(,At,0\ +p Arial0p&@wTwN (\\@>0N (dv% % % % % % % % % % % % % % % % % Rp ArialB0&,xw(,@,0\ +pArial0p&@wTw \\@>0 dv% % % % % % % % % % % " !%   % " !%   % " !%   !!'% %   V0 .. ( ..'% ( V0a..a.V0a a a &% . 66 6Q6 Q66 686 866 o66 66 V66 6z6 z=66 6a6 a% % % " !% % %   !!% (   V0 . ( .. V0a..a.V0a a a % % % " !% % %   !!&% ( 'MM%   V02 W7'% ( V0RWW% ( 'ss% V02 \W7#7WW&% ( % ( 's&M% V02 \W7#7WWRp ArialB0&,xw(,<,04\ +pArial0p&@wTwW \\4@>0W dv% % % % % % ( '% ( +}y% % % " !% % %   }y  TX%n@?@@%LP10%%% % % % % " !% % %   !!% % % %   +.g% % % " !% % %   .g  TT8.\x@?@@8.LP0%% % % % % " !% % %   !!&% 'MM% (   V0JEE'% ( V0% ( 'ss% V0JE`&% ( % ( 's&M% V0JE`% % % % % ( '% ( +<B% % % " !% % %   <B  TdFS@?@@FSLT11,7%%%% % % % % " !% % %   !!% % % %   +k% % % " !% % %   k  TTu@?@@uLP0%% % % % % " !% % %   !!&% 'MM% (   V03888'% ( V0N=SS88S% ( &% ( 'M3% V03588Z:8'3f% ( V0NU=SSZ8Z8S% ( 's&M% V0N5_8Z::SZ8Z% % % % % ( '% ( +&% % % " !% % %   %  T` @?@@LT8,5%%% % % % % " !% % %   !!% % % %   +H% % % " !% % %   G  T`/@?@@LT5,1%%% % % % % " !% % %   !!&% 'MM% (   V0q  v v   v '% ( V0 {   v v  % ( &% ( 'M3% V0q  v v   v '3f% ( V0 {   v v  % ( 's&M% V0  v    v % % % % % ( '% ( + < % % % " !% % %    <   T` 1 @?@@ LT8,9%%% % % % % " !% % %   !!% % % %   + u % % % " !% % %    u   TT  @?@@ LP7%% % % % % " !% % %   !!&% 'MM% (   V0 +   P 0  '% ( V0 K   P P  % ( &% ( 'M3% V0  U P 0 P'3f% ( V0 U P P P% ( 's&M% V0    % % % % % ( '% ( + z % % % " !% % %    z   Td  @?@@ LT10,1%%%% % % % % " !% % %   !!% % % %   + y R% % % " !% % %    y Q  T` n 9@?@@ LT8,9%%% % % % % " !% % %   !!% ( % &% .  6.6.6666o6o6V6V6=6=6% TTS@?@@LP0'TTv@?@@vLP2'TT9@?@@LP4'TT]@?@@]LP6'TT @?@@LP8'TXD@?@@DLP10''TX@?@@LP12''TX+{@?@@+LP14''TX@?@@LP16''TXb@?@@LP18''TX@?@@LP20''% % % % % % " !% %   iev  Rp Arialw ! w  ! &0 ! 03 !b<aQhJ03 !bĔ0ad0Ĕ:Ĕ6bwaw! w3 !Q@wTw \,w(>0 dv% TiLl@?@@lLaverage No. of adults/samples((((+(3++(++(((?+((% ( % % % % " !% %   !!.  6( ..6G1.61Go.6oG.6G .6 G( .6( GTYY@?@@YY Ld27.07.2001.''''''''TY @?@@Y Ld27.08.2001.''''''''TYG@?@@Y Ld27.09.2001.''''''''T Y @?@@ Y Ld27.10.2001.''''''''TO Y @?@@O Y Ld27.11.2001.''''''''% % % % % % " !% %   x9  Tm @?@@ Ldexamine date'''?+'+''% % % % " !% %   !!% % " !% %   % % " !% %   % '%   +% % % " !% % %   % % % " !% % %   &% ( '3f% (   +7b Td&u@?@@&LTdead''''% % % " !% % %   % % % " !% % %   &% ( '% (   + Tl@?@@LXalive'#'% % % " !% % %   % % % " !% % %   % % % " !% % %   % ( % ( % " !  " !  ( ( ( " F4(EMF+*@$??FEMF+@ Excel.Chart.89q Oh+'0@Hht Zavod za zastitu biljaVRoMicrosoft Excel@&#?@(=,՜.+,0 PX  ObjInfoWorkbook$fSummaryInformation(DocumentSummaryInformation8H =\pVR Ba=;  = T$<X@"1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial1Arial#,##0\ "kn";\-#,##0\ "kn"##,##0\ "kn";[Red]\-#,##0\ "kn"$#,##0.00\ "kn";\-#,##0.00\ "kn")$#,##0.00\ "kn";[Red]\-#,##0.00\ "kn">*9_-* #,##0\ "kn"_-;\-* #,##0\ "kn"_-;_-* "-"\ "kn"_-;_-@_->)9_-* #,##0\ _k_n_-;\-* #,##0\ _k_n_-;_-* "-"\ _k_n_-;_-@_-F,A_-* #,##0.00\ "kn"_-;\-* #,##0.00\ "kn"_-;_-* "-"??\ "kn"_-;_-@_-F+A_-* #,##0.00\ _k_n_-;\-* #,##0.00\ _k_n_-;_-* "-"??\ _k_n_-;_-@_-"kn"\ #,##0;\-"kn"\ #,##0#"kn"\ #,##0;[Red]\-"kn"\ #,##0$"kn"\ #,##0.00;\-"kn"\ #,##0.00)$"kn"\ #,##0.00;[Red]\-"kn"\ #,##0.00>9_-"kn"\ * #,##0_-;\-"kn"\ * #,##0_-;_-"kn"\ * "-"_-;_-@_-,'_-* #,##0_-;\-* #,##0_-;_-* "-"_-;_-@_-FA_-"kn"\ * #,##0.00_-;\-"kn"\ * #,##0.00_-;_-"kn"\ * "-"??_-;_-@_-4/_-* #,##0.00_-;\-* #,##0.00_-;_-* "-"??_-;_-@_-                     ` Chart4Sheet1dSheet2eSheet38zr8 3  @@  " 27.07.1997.- 27.08.1997. 27.09.1997. 27.10.1997. 27.11.1997.ukupno~iviuginuli zdravo zrnonagri~eno zrno prah zrna alivedead 27.07.2001. 27.08.2001. 27.09.2001. 27.10.2001. 27.11.2001. R j  =MHP LaserJet 5L4C 4dXXA4DINU"4Z" dXX??3` (8` '` (8` '` (8@3d 3Q: ukupnoQ ; Q ; Q3_4E4 3Q: aliveQ ; Q ; Q3_ O   MM< 4E4 3Q:  deadQ ; Q ; Q3_ O 3f  MM< 4E4D$% M3O&Q4$% M3O&Q4FAC 3OC 3 b#M&! M MN43*#M&! M! M MN4%  M3ON&Q  examine date'4% MZ3O&Q >average No. of adults/samples'43" :dd3O% M"3OQ443_ M NM  MM< 444% M23O&Q23 M  4'4% M23O&Q23 M  4'44e 27.07.2001. 27.07.2001. 27.07.2001. 27.08.2001. 27.08.2001. 27.08.2001. 27.09.2001. 27.09.2001. 27.09.2001. 27.10.2001. 27.10.2001. 27.10.2001. 27.11.2001. 27.11.2001. 27.11.2001.e$@ffffff'@!@ffffff@!@@333333$@!@e>  =  dMbP?_*+%MHP LaserJet 5L@g ,,@MSUDHP LaserJet 4L>[`d " d,,??U} } m} $  ########## #"        "   |?5^ @    t@"   ~ Hr@I +?~ L@  Mb@MbX9?~ <@"   B`"@Zd;O?~ Q@  V-?/$?+?"     /$@$C?~ @S@  &1?-?~ ?    ! " $@$@  sh|?@?@V@  jt?~jt?uV?  $@$@" H@H@<  @@" @@!@@<  @X@z@" ؘ@Ћ@@<  @@@"  3@@Ћ@<   @X@@"d,.( $  v  <NMM?p < p]|-  ="|??3` (8` (8` (8` '` '` 'PH 0(  3d7 3Q: ukupnoQ ; Q ; Q3_4E4 3Q: aliveQ ; Q ; Q3_ O 3< f <v2 @"B  ` MM< 4E4 3Q:  deadQ ; Q ; Q3_ O + f +v2 @"B  ` MM< 4E4D$% M3O&Q4$% M3O&Q4FAC| 3OC|3 b#M&!  ̙/f /v @"B  `43*#M&! M! M ̙/f /v @"B  `4%  M3OQ&Q  examine date'4% P@~MZ3O&Q >average No. of adults/samples'43" :dd3O% M"3OQ443_ M NM  MM< 444% M23O&Q23 M  4'4% M23O&Q23 M  4'44eee xp  6NMM?0Z-]`H-  ="H??3` ^)8` ^)8 ` ^)8 ` ^)8 PH0 0(   3d23 M NM4 3Q:  zdravo zrnoQ ;Q ; Q3_ O  f vd @"B  ` MM<4E4 3Q:  nagri~eno zrnoQ ;Q ; Q3_ O ̙. f .v2 @"B  ` MM<4E4 3Q:  prah zrnaQ ;Q ; Q3_ O  f v2 @"B  ` MM<4E4D $% M3O&Q4$% M3O& Q4FA91 3O91 3 b#M& !  31f 1v @"B  `43*#M& ! M! M 31f 1v @"B  `4% W SM3Oi& Q  datum pregleda'4% DM3OO& Q  oateenje %'43" :dd6 %S3O6 %% M"3OQ4444% UM 3O& Q z;Rhyzopertha dominica F. - oateenost zrna tijekom 5 mjeseci'44eee xp  6NMM?p]`-  ="??3` Q' ` Q' ` Q'` Q'PH@0(  3d23 M NM4 3Q:  zdravo zrnoQ ;Q ;Q3_ O  f v2 @"B  ` MM<4E4 3Q:  nagri~eno zrnoQ ;Q ;Q3_ O ̙. f .vd @"B  ` MM<4E4 3Q:  prah zrnaQ ;Q ;Q3_ O  f v2 @"B  ` MM<4E4D $% M3O& Q4$% M3O& Q4FA<A 3O<A 3 b#M&!  31f 1v @"B  `43*#M&! M! M 31f 1v @"B  `4% F r M3Oi&Q  datum pregleda'4% M M3OO&Q  oateenja %'43" :dd 'r3O '% M"3OQ4444% xK M 3Ou&Q z;Sitophilus granarius L. - oateenost zrna tijekom 5 mjeseci'44eee xp  6NMM?*x]`h -  ="h ??3` ')` ')` ')` ')` ')PHP0(  @п3d23 M NM4 3Q: Q ; Q ; Q3_4E4 3Q:!  ~iviQ ; !!Q ; Q3_ O  f v2 @"B  ` MM< 4E4 3Q:" uginuliQ ; ""Q ; Q3_ O - f -v2 @"B  ` MM< 4E4D $% M3O&Q4$% M3O&Q4FA;3 3O;3 3 b#M&!  31f 1v @"B  `43*#M&! M! M 31f 1v @"B  `4%  lM3Oi&Q  datum pregleda'4% GM3O[(&Q 8prosje an br. imaga/uzorku'43" :dd8+Q3O8+% M"3OQ443_ M NM  MM< 444% ;V$ M 3O&Q ?Sitophilus granarius L. - brojnost populacije tijekom 5 mjeseci'4% M23O&Q23 M  4'4% M23O&Q23 M  4'44eee >@  7 =  dMbP?_*+%" ??rU>@7 =  dMbP?_*+%"??rU>@7 Poljoprivredni fakultet Osijek- Sheet1Sheet2Sheet3Chart4  WorksheetsCharts FMicrosoft Equation 3.0 DS Equation Equation.39q_893921336F@0|w@0|wOle CompObjfObjInfoEquation Native  0_893921191FM1|wM1|wOle !CompObj"f}IkI 2x` FMicrosoft Equation 3.0 DS Equation Equation.39qhhI@cI Oh+'0$4@L\ lObjInfo$Equation Native %,1TableASummaryInformation( &Rp_ޯX~aE_5e^.&/Kmh7?xwi 310sua>b`耺}~PO灼o9@n~bIsK_@[)+ZKՑ/Է֚1C|>»Sx5xu4u1y {^ `uG \5J\?3X}3 m gy뎻г=Җ4tMSY v3"ײ]ܩgX,שۡ!>g}io/m9m @G+␌1jO[ ufn1o/xՒxٝ>6T߽~/pc})xa@Qes_jۂॠ k+yKKkܷ m־K.}Gw!o}rh(ECP@G{{ :JSgOV#ek_w:WkjPߙP7݌⣽I[S 0Fu}3zzJ}y8?.a4 pi2;*Ҿ4scmҐC piq۱msnd\:|bLw3A9UqЇUѹBy{ gVvi{ 噫0Ws(JҸmAmqj8\C}*~elv0;j>:_{XzOOvluaT7-={Feާn}nk&xvVu@Gm|;2=r bCۥhm{DQd圑|fN ?ωHf,4\cY3?}c|}*/|N{Gm2b>66ƙ d!ӕ}XS~2gJk"i~i^o%Ckrwi rߋ>Ox{}Z9xNtg=hVQnoػ7.)H.)3L>k,'W]fQf?Qw4Z2&kw8l5f bv%}Bcd;Q1lu  "ϕ:Nifbr?3fכ7u>Q\A$yn1&T5rڱ yDdB  S A? 2D̔"]ܐ X o3`!̔"]ܐ XH`!xcdd``^$D@9@, fbd02,(1dbfaZ(d3H1ibYπX jx|K2B* R @naJ`u!01DY@##ȽAN`A $37X/\!(?71b #6r`a` RF9`S= cdbR ,.Iex1 @3`/Dd%B  S A? 20x^蕞Q 3`!̔"]ܐ XH`!xcdd``^$D@9@, fbd02,(1dbfaZ(d3H1ibYπX jx|K2B* R @naJ`u!01DY@##ȽAN`A $37X/\!(?71b #6r`a` RF9`S= cdbR ,.Iex1 @3`/Dd%B  S A? 20x^蕞Q  S A? =20x^蕞Q 20x^蕞Q 4ˎGHԸjR h"6U) HAHQ%T螇EJX;`W*P^pxUФLr$rgǙ^s"*!mL"R߄.sQ{ǽ'ɇ!ws9%+eMyjnӡ=6 Pk=;1D^Bl'k;pTTvc}~ ? 1CVoM{>gAr[a;gzKbe~Ok<-Eٟ9WΫ0<ߛml/5CWΔ+hLI_*ğ*l*iq9Wm}O¬Un$|lFN<ߪoΗ[5ߪoTF|e|[5moQWm;w2LQ=GF(۠V3 ϴ٪V3y`Z&Il2/ gZi5cZ&5Ǵ+нBəVY9I X%8`[c[? >S}lKxl; ʶK0z-%m1W@ּN EgTrF;o2lOw 6#VM켞ykU_v[/ =Biir.ѽ V> {$:U==Rriv$SlVt~oQecwX8_tJ%N&`Bfk7=3v6v/ehMg`g =3=]*-$˫ zcvEa%tgnjwEm3c'){>ΐ w'm{ڛ{ndT =lյIJU.:vyK{G 0շ*ZXRW=TW=T~TU-z,--_TWou;ͷ /7x%M/_4_WQL++LSbtbMO˝LBߩ:_TvM/ȭ4*2ZE^ȼUd^V= B^6Wn/<IdU'ۚ䑭w]G5$^ȶ&RI>ٲd[ZUQpg g cѪWQR⡿(/>H⯿OQ^䭿hU乿()_y/Zy/JJEVE|EZj33t::FY FҘCf3pg:dEL xJ?6ӄlllZGf#V1h#nGc5%FecR#>&&j]Ԡi^BQ0uݨ FQu+ttk,+]-+uYnė堣 tԄڈ'kF ~n-=hTj̪UjAӥAk]7ںtԮhUu-u=wX3`!b$Ew'>=wlbeQȗEx[OhV~#Y-۩ZoMid)lsCI0lIEkmՕ9Fla%١l;o 2B\J`m'ɡm:xga?I~O~?)DtG~o# _d-&vC?>h*:1[y3^n֫ tAb v;&OhlhPoFoSłb} BvQ'G!|e:ا-n8sx-Sg{$I6Ľ^!#|`יZtOĜGfj5Me4pø=+%qI"JqQ(䣌*qRQ'G"55̡""92rgn.GQ? 0Bp=8"[3\X~m5*zMK =g(/B^ѶVˬZuaQu(tB <<^9rW'댽^篪^ WU腷CzpWqgE]+w*lxK/L(n NOn]޿$\Nnn!+ ey+w^J7[/|[^MeτW/VWNIB;z-pN^%yA/nI^ $[ ^ea{Σ}ҴDt Zrg/8Je)J%93|Oxl~jCwĘXc{u:޾nϤM ϻъ~7*jL$F%9glmI9&Nʬz_euu[du]5Xru;=́{Qo:TtSa5V$Q_ Z Iy-Xׂﭵrt-e__7Wvulg#>Q\W"pE+\W"pE+\W"pE+\W"pE+\W"pE+"`/Lp:t8QUDd.*< F C A2phL3`!Dhn  XMEx[MLG7@K*CJQS *"mIA2{jU6U ʩz(BU"K޸TJWZm uce><d"N >D4PFȎb9O>Tmtjo#-k9#0#C;KJғ d[pBA/M]D~+RyPX_ZeZqq8/LzntMP}Kݔx,FύOr7ƚn%ՙQliR.K-tv,&'OAlv8'=b!'3y#drM2yN W? 7ebQ}/93DR0qdM>KŰ<2@([b\u8,*bYxt\wdq򸕯XBE4GXLeoկN 6p 8<9&UG9q 9<掋Ҫ ѕx>[[ʔ GB&p[ \CA?,OvؿtpT *N6Kp c'6a{`r9!({ͤ=Důq`) {M;p< doJdԟØ:|.xT4s1y~ B9Ҫ):1u,ފ᭨<󈭨 3SohrޗG?eޗGe7t:.d?t:|CWu]?ɨs_:^,KlT^Etiia(OaT#蔲ڼijx5BFjFf6xESidQiߴh򍪪{ƺ״]}䍵qMfԴ]ӦmQO)ODyG1Q:2xG= QG2hu|hέXUYuxVΪN9k__8u|u2:xG}H>|aTq<ҁt/xK^:ҁt/xK^:ҁt/xK^:ҁt/xK^:ҁt/xK^:ҁt/x{{?q88E?{DdlkD G # A#" `2( :gaykafc3`![( :gaykaf) ;1)xKPIZ5Z*ZJW;l8/NSw*c 46M`(< ex uƼ {I;t:=DCZ~ˀ}W ~>Ja B}ߡ7[6 V#}CY4*ZNH nӌL[ah%'Ыp\S3\, OYjM'{×@7?C8y8.#NnKXW5f(+|!yB?s:j";@RY_=X'wayj'~yYK*vn^է(:zRj?Ы(:zSS<Ŷ$`oѨ$+M1Eݒ9MͥY{:4/uRI-}|Akr2Aϫ*ex'[^ oyjSx{-hz׈jYburr  JB,e/aX+R |_=ɀCҖB3kfVY H!,a[*C(@V5̦b(Ex=|f0X *+eQS _) (Vp_=H ^ȶ\4d O- Nd /9vw%9v}Β|3zI;t:&;g"bɉH7;Qq&ےQImgݑZAKnݎg[}FQ+o7| ǻPCG%nGÖ|~]g=}{v߳g=Wot}p/}8GHIYDyK kirma@suncokret.pfos.hryK >mailto:kirma@suncokret.pfos.hrx    nInsecticidal activity of some aromatic plants from Croatia against lesser grain borer (Rhyzopertha dominica FanseVlatkaclatlatNormalcVlatkac9atMicrosoft Word 9.0t@@J+@&-@H`&|wcr՜.+,D՜.+,DocumentSummaryInformation8/\CompObj9jX hp  :Rozman:y nInsecticidal activity of some aromatic plants from Croatia against lesser grain borer (Rhyzopertha dominica F Title 8@ _PID_HLINKSAxE-mailto:kirma@suncokret.pfos.hr  FMicrosoft Word Document MSWordDocWord.Document.89q i8@8 NormalCJ_HaJmHsHtH8@8 Heading 1$$@&a$5\``` Heading 2$<@&,56CJOJQJ\]^JaJmH sH tH <A@< Default Paragraph Font@B@@ Body Text, uvlaka 3$a$6@6 Footnote TextCJaJ8&@8 Footnote ReferenceH*4P@"4 Body Text 2$a$>*.U@1. Hyperlink >*B*ph>V@A> FollowedHyperlink >*B* ph>uv@> . \    !*!P!  !";<KLCDZ[o15 6 O P !!!!"#3%l&m&n&K'L'''(o)p)))*+,1-x- . .F.G.o0p000E1234A55l6m666t9u9v99999>;?;i;j;h<>hAiAAAdCeCCCFFFFPHRH`HaHIzJKMQRTXVDXYZJ^`ubvbbbccdeff hhijqk}l~mInmodp5qrrstuuùuvǁ߁#T߂!BCDTUV"Deф45<^…Ʌ -NOVxۆ܆&Ghipԇ@a͈dҊ<?000000 000000 00000000000000 0 0 0 0 0o 0o 0 0 0 0 0 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@00@0@0 0w*[M|3@K]~Ӕ((QTWZ\achkmpsu|~@#P)9bKpAڇAЉg: w+3͏ޏ1[u ڔ>\(RUVXY[]^_`bdefgijlnoqrtvwxyz{}&S2vKvMvvvvwwwwwwwwww x xx#x%x&x:xI]_j~Ʉ˄ք ,.BVXcwyυ%'2FH\pr}ӆՆ  +?AL`bv̇·ه$8:EY[fz|ňLj҈>:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::(VnX/X2$"{ޗ v!32$ΊCE׉p +3@<(  P  # A#" `J  # A"B S  ?H>D%TD%t    ":<JLBDY[no 014 6 N P !!!!!#"#2%3%k&n&J'L'''((n)p)))**++,,0-1-w-x- . .E.G.n0p000D1E12233~44@5A555k6m666s9v99999=;?;h;j;g<h<>>gAiAAAcCeCCCFFFFOHRH_HaHIIyJzJKKMMQQRRTTWVXVCXDXYYZZI^J^``tbvbbbccddeeffffh hhDhhhiijjpkqk|l}l}m~mHnInlomocpdp4q5qrrrrssttuuъҊ);<? ":<JDZ6 O m66v99vbbcdu)?Vlatka$C:\My Documents\Vlatka\Prijevod1.docVlatkaUC:\WINDOWS\Application Data\Microsoft\Word\AutomatskiOporavak spremanje Prijevod1.asdVlatkaUC:\WINDOWS\Application Data\Microsoft\Word\AutomatskiOporavak spremanje Prijevod1.asdVlatkaUC:\WINDOWS\Application Data\Microsoft\Word\AutomatskiOporavak spremanje Prijevod1.asdVlatka$C:\My Documents\Vlatka\Prijevod1.docVlatkaUC:\WINDOWS\Application Data\Microsoft\Word\AutomatskiOporavak spremanje Prijevod1.asdVlatka$C:\My Documents\Vlatka\Prijevod1.docVlatka$C:\My Documents\Vlatka\Prijevod1.docVlatka$C:\My Documents\Vlatka\Prijevod1.doc Vlatka RozmanPC:\Documents and Settings\All Users.WINDOWS\Documents\Radovi\York-manuscript.docdv(w ^`56o(.^`OJPJQJ^Jo(-pLp^p`L.@ @ ^@ `.^`.L^`L.^`.^`.PLP^P`L.dvzRd)cXA   X uww-w.w:wFwGwHwXwYwZwrwwwwwwwx@xqxrxyxxxxyyy)y*yKymynyuyvywyxyyyyyyyyz@zqzrzyzzzz{{{*{L{m{{{{{{{||&|H|j|||||||}<}=}D}f}}}}}}}~9~[~\~c~~~~~~~6Xz{6XYabcd[\tuǁ߁#T߂!BCDTUV"Deф45<^…Ʌ -NOVxۆ܆&Ghipԇ@a͈?--------@TDCCC!C"CGCHC^C_C`Cajk*>PP @PP<@P(PT@PPP@PhP@PlP@PxP@PUnknownGz Times New Roman5Symbol3& z Arial"1ōgfRyfzg& cr:!0y2QmInsecticidal activity of some aromatic plants from Croatia against lesser grain borer (Rhyzopertha dominica FVlatkaVlatka