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Abstract: Bending of solid wood from European oak is one of the most demanding technological
processes due to its specific structural and physical properties and variability. We investigated the
influence of wood moisture content (MC) and stiffness, determined by NDT, as well as previous
drying methods on the bending ability of the wood. The best quality was obtained with bending
specimens bent at a moisture content of at least 16% and quarter- or semi-quartersawn. The number
of rejected specimens increased slightly when HF bending was used. Single-stage predrying of oak
to a final MC of 8% resulted in a high rejection rate (>70%) regardless of drying technique. The
acceptance rate was higher for less stiff specimens where the ratio of ultrasonic velocity in the straight
(vS) and bent region (vB) was less than 0.5 (vB/vS).

Keywords: wood; solid wood bending; quality; nondestructive testing

1. Introduction

European oak (Quercus robur L., Quercus petraea (Matt.) Liebl.) is an important com-
mercial tree species and a widely used industrial wood for a variety of products such as
veneers, furniture, interior and exterior structures, and many other items [1]. In modern
production of solid oak furniture, the need for complex spatial shapes of furniture elements
is common. In these cases, the reduced mechanical properties of the wood in the transverse
direction can be a limiting technological and applicable factor. Difficulties in the production
of complex 3D solid wood shapes also arise from the low material yield during sawing
and from the demanding technological processing [2,3]. One solution that overcomes these
limitations is solid oak bending.

Solid wood bending has been practiced for centuries, and the quality of the bending
is judged by the proper deformation achieved without apparent failure of the wood [4].
Of particular interest in solid wood bending are the effects of creep and, to a lesser extent,
relaxation. Creep is greatly enhanced by the absolute value of moisture content (MC)
and by the changes in MC of the wood under bending load due to the mechanosorptive
effect [5–7]. The rate and extent of mechanosorptive deformation correspond to the extent
of MC changes and are usually independent of the time during which the MC changes
occurred [8,9].

In the practice of commercial wood bending, moistened solid wood is usually bent
at higher temperatures, which leads to a corresponding plasticity of the material [10]. It
is assumed that under such conditions the glass transition temperature (Tg), at which the
modulus of elasticity (MOE) decreases significantly, is exceeded for some or all of the basic
polymeric constituents of the wood. The highest Tg in the dry state, above 200 ◦C, was
found for cellulose, slightly lower, between 150 ◦C and 180 ◦C, for hemicelluloses, and
below 150 ◦C for lignin [11,12]. However, several studies show that the transition from
elastic to plastic mechanical behavior of wood occurs at temperatures well below 100 ◦C,
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especially at higher moisture contents [13,14]. Most explanations for this phenomenon state
that the low-molecular-weight water molecules in wood act as diluents and plasticizers [7].

However, the correct MC of specimens before bending is controversial. Condition-
ing the material in the range of 12 to 25% MC covers most bending applications and
methods [15]. Specific bending radii and severity of deformation may require different
MCs, achieved by different drying and presteaming methods [16,17]. Heat and moisture
plasticizing by presteaming increases the compressibility of the wood by up to 40% of the
compressive strain, but has virtually no effect (up to 2%) on the tensile ductility of the
wood [10,15,18]. The softening treatment shifts the neutral axis of the bent parts towards
the convex side, which is axially stressed during bending. This shift significantly improves
the bending deformation of the wood. In addition, a metal band with end stop is used,
which is wrapped around the convex side of the sample, a method discovered by Thonet
in 1856 [18].

Due to the wide variability of chemical, structural, and mechanical properties of wood
species, the bending quality of wood varies, so selection is important. The highest bending
quality is obtained with straight-grained pieces, free of crossgrain, of generally fast-growing
and less dense species [18,19]. Some studies also report that ring-porous woods generally
give better results than diffuse-porous woods. In practice, quartersawn lumber is preferred
for bending, but some sources also indicate that flatsawn lumber bends better in severe
bends [10,16,18].

In this study, we aimed to investigate the possibility of bending of European oak
wood, which is less commonly used in industrial practice because of the good bending
properties of other European hardwoods. We were particularly interested in the influence
of wood moisture content and previous drying methods on the bending ability of the wood.
We also wanted to see if it was possible to determine the quality of the bending using
non-destructive techniques.

2. Materials and Methods
2.1. Sampling

The European oak (Quercus robur L.) wood used in the study was obtained by sawing
1st-grade oak logs. The test pieces were 1300 mm long, 60 mm wide, and 38 mm thick and
were straight-grained and sawn from heartwood. A total of 120 elements were taken from
the mill’s own lumberyard (Spin Valis d.d., Požega, Croatia; N 45.338396◦, E 17.690455◦,
311 m a.s.l.), with 40% of the elements oriented radially (R; quartersawn) and semi-radially
(RT) and 20% of the elements oriented tangentially (T; flatsawn) (Figure 1). The initial
moisture content of the samples was 56.3% (St.dev. = 10.2%; St.dev.—Standard deviation).
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2.2. Material Processing
2.2.1. Wood Drying

To optimize the organization of the industrial production process, 3 different sawn-
wood drying techniques were included in the study: air drying (AD), convection kiln
drying (KD), and vacuum drying (VD). To achieve sufficiently short processing times, we
have combined these available industrial drying techniques. We have tested the possibility
of single-phase processing of oak elements to a final moisture content (MC) of 8% before
bending (G1, G2) and two-phase processing (G3, G4). In the latter case, phase 1 is performed
up to a wood MC of 16%, at which the wood was bent. For high wood MCs, only air drying
and convection kiln drying were used, while for drying at low MCs (<16%), vacuum drying
was additionally tested. By combining different drying techniques (AD, KD, VD) and the
final MC achieved before the bending process (16% and 8%), 4 test groups (G1. . . G4) were
formed (Table 1).

Table 1. Classification into process groups (G1. . . G4) and treatment sequence of test oak samples,
with target moisture content, before and/or after solid wood bending.

Test Group Processing Procedure No. of Samples

G1 Air drying (20. . . 25%)→ Kiln drying (8%)→ Bending 30
G2 Kiln drying (20. . . 25%)→ Vacuum drying (8%)→ Bending 30
G3 Kiln drying (16%)→ HF Bending→ Kiln drying (8%) 30
G4 Kiln drying (16%)→ Bending→ Kiln drying (8%) 30

Air drying of G1 test samples took place in the first half of 2022 in the sawmill
warehouse at the company’s site. The average drying temperature increased from 3 ◦C in
January to 18 ◦C at the end of May 2022. Subsequently, the G1 samples were conventionally
dried in the kiln dryer at normal temperature (<45 ◦C) and moderate drying gradient (<2.5)
until a target value of 8% MC was reached. The solid wood was then steamed and bent.

For the G2 samples, standard convection kiln drying was performed at low tempera-
ture from the initial green state to 22% MC. These samples were then placed in a vacuum
drying chamber where heat transfer was performed using the hot plate method. Vacuum
drying was performed at a temperature as high as 70 ◦C and an absolute vacuum of nearly
100 mbar to achieve a final value of 8% MC. This was followed by steaming and bending of
dried raw oak wood pieces.

The samples in groups G3 and G4 were also kiln dried using the same drying equip-
ment as for samples G1 and G2 (Figure 2a). However, the samples of groups G3 and G4 were
dried in 2 stages. First, they were convection kiln-dried as raw elements at low temperature
(following the same drying schedule as group G2) until they had a final MC of 16%. The
solid wood was then steamed and bent. The bent solid wood elements were then dried in
the same kiln dryer at normal temperature to a final MC of 8%, as in G1.
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2.2.2. Solid Wood Steaming

Before bending, the dried specimens were steamed. The specimens were placed in
boilers heated with steam at 130 ± 3 ◦C and a pressure of 1.8 bar. The process took an
average of 3.5 h (±0.5 h). The temperature at the end of steaming, just before the specimens
were placed in the bending press, was checked with a non-contact thermal imaging camera
(FLIR i60; FLIR Systems AB, Täby, Sweden). The surface temperature of the specimens was
above 70 ◦C, while the temperature inside the specimens was even higher (Figure 3).
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2.2.3. Solid Wood Bending

The bending of the oak specimens of groups G1, G2, and G4 was carried out classically
in the bending press using a metal belt with end stop on the convex side of the specimens.
A mold with a center radius of 150 mm was used for bending. Three specimens each
were placed in the press-bending mold. The angle between the two straight parts of the
bent specimen was 105◦, which corresponded to the desired geometry of the piece of
furniture—the armchair (Figure 4). The pressing time was 30 min. Subsequently, the bent
specimens were placed in stacks, either for further mechanical processing (G1 and G2) or
for additional drying (G4).
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To increase productivity, G3 samples were bent at high frequency (HF). Research
on microwave drying of wood has been conducted since the early 1960s and is well-
documented [20]. The same press and mold was used for HF bending as for conventional
bending. With a 20 kW HF generator, the wood was bent at 10 MHz, heated, and finally
dried to 8% MC. The pressing time was on average 30 min.
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2.3. Quality Assessment of Bent Oak Elements

The quality of the bent oak was determined primarily visually. In the bending area,
the tested specimens were carefully inspected in all planes. Bending was confirmed to be
successful when the specimens showed no tensile cracks and failures on the convex side
and a homogeneous structure on the concave side. Specimens with local bending, buckling,
and kneading of the fibers on the concave side of the specimens were also rejected.

The velocity of ultrasound (v) has been added to the quality assessment of bent oak
samples with twice-per-piece (vS—straight part, vB—bent region) measurement of the time
of flight in the longitudinal direction by Proceq Pundit PL-200PE (Proceq Inc., Scharzenbach,
Switzerland) pulse ultrasonic device. The exponential transducers with working 54 kHz
frequency were used (Figure 5). The velocity of ultrasound in the straight part of the
specimens (vS) and wood density (ρ) were used to determine the modulus of elasticity
(MOE) of bent oak specimens (Equation (1)).

MOE = ρ · v2
S (1)

Forests 2023, 14, x FOR PEER REVIEW 5 of 11 
 

 

bending. With a 20 kW HF generator, the wood was bent at 10 MHz, heated, and finally 
dried to 8% MC. The pressing time was on average 30 min. 

2.3. Quality Assessment of Bent Oak Elements 
The quality of the bent oak was determined primarily visually. In the bending area, 

the tested specimens were carefully inspected in all planes. Bending was confirmed to be 
successful when the specimens showed no tensile cracks and failures on the convex side 
and a homogeneous structure on the concave side. Specimens with local bending, buck-
ling, and kneading of the fibers on the concave side of the specimens were also rejected. 

The velocity of ultrasound (v) has been added to the quality assessment of bent oak 
samples with twice-per-piece (vS—straight part, vB—bent region) measurement of the 
time of flight in the longitudinal direction by Proceq Pundit PL-200PE (Proceq Inc., Schar-
zenbach, Switzerland) pulse ultrasonic device. The exponential transducers with working 
54 kHz frequency were used (Figure 5). The velocity of ultrasound in the straight part of 
the specimens (vS) and wood density (ρ) were used to determine the modulus of elasticity 
(MOE) of bent oak specimens (Equation (1)). 𝑀𝑂𝐸 ρ ∙ v  (1)

 
Figure 5. Determination of the velocity of ultrasound (Proceq PL-200PE) in the straight part (vS) (a) 
and in the bent region (vB) of solid oak specimens (b). 

3. Results and Discussion 
3.1. Process Kinetics 

Air drying of G1 specimens was the slowest and the longest process, depending on 
local climatic conditions. Air drying lasted 84 days, during which the wood reached an 
average MC of 21.9%. We then dried the wood in a convection kiln dryer for an additional 
28 days to an average final MC of 8.7%. The drying of group G2 was only slightly faster 
than that of group G1. In the first part, drying took 56 days to an average MC of 20.8%, 
followed by 11 days of vacuum drying to a final MC of 8.6%. In both groups, specimen 
bending was performed at low MC (<10%) (Figure 6). 

 

Figure 5. Determination of the velocity of ultrasound (Proceq PL-200PE) in the straight part (vS)
(a) and in the bent region (vB) of solid oak specimens (b).

3. Results and Discussion
3.1. Process Kinetics

Air drying of G1 specimens was the slowest and the longest process, depending on
local climatic conditions. Air drying lasted 84 days, during which the wood reached an
average MC of 21.9%. We then dried the wood in a convection kiln dryer for an additional
28 days to an average final MC of 8.7%. The drying of group G2 was only slightly faster
than that of group G1. In the first part, drying took 56 days to an average MC of 20.8%,
followed by 11 days of vacuum drying to a final MC of 8.6%. In both groups, specimen
bending was performed at low MC (<10%) (Figure 6).
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The drying of the G3 and G4 samples was carried out in the same way as that of the G2
samples in the first phase. An average MC of 16.8% was obtained, and the wood was bent
in this condition, using the HF field in group G3 and the conventional method in group G4.
The drying of the bent wood of groups G3 and G4 in the second phase in a kiln dryer to a
final MC of 8.6% took another 39 days.

3.2. Bending Success Rate of Oak Wood

Bending success rates were highest for groups G3 (60.9%) and G4 (42.9%) when
specimens were bent at higher MCs (>16%). In these two groups, G3 specimens appear
to have lost some success at the expense of HF bending (Figure 7). As other studies have
shown, excessive energy input of HF into the bent specimens can lead to an increase in
temperature and, due to trapped moisture in the specimens, an increase in vapor pressure
that can break down the cellular wood structure [17]. Especially in impermeable wood
species such as European oak [21], this can lead to high internal stresses and possibly failure.
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However, we did not succeed in bending the G1 (28.6%) and G2 (8.3%) samples. It
appears that the low moisture content of the bends (MCG1 = 8.7%; MCG2 = 8.6%) does not
allow the necessary plastic deformability that can be achieved when the material exceeds
the glass transition temperature [14,15]. At the same time, it is shown that accelerated
vacuum drying in stage 2, from 20.8 to 8.6% MC (G2 group), can cause high internal stresses
due to the poor permeability of the oak wood tissue [22]. These can lead to additional
microstructural defects, which then cause the material to fail during bending. This is
reflected in the higher rejection rate of the G2 group compared to G1.

3.3. Appearance and Visual Assessment of Defects of Bent Oak Wood

Visual inspection of the rejected bent oak specimens revealed approximately three
typical defects, with material failing on the concave side (I), on the convex side (II), or on
both sides (III) (Figure 8). On the concave side, local wrinkling, buckling, and kneading of
the fibers were observed, most pronounced at the bottom of the curve (Figure 8b, I—failure
type). On the opposite, convex side, several of the rejected bends exhibited tensile failure,
with both brittle and fiber breaks (Figure 8c, II—failure type). The worst case, where
bending was unsuccessful, was represented by the test specimens where local fractures
occurred on both the concave and convex sides (Figure 8d, III—failure type).

The various failure modes occurred to about the same extent in all specimen groups
examined (G1. . . G4). For the individual orientations (quartersawn, quarter- to flatsawn,
flatsawn), we could not identify a characteristic failure mode. The main cause of structural
failure appears to be poor plasticization of the specimens before or during the bending pro-
cess. This is also a commonly cited reason for solid wood bending in past research [4,10,18].
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Figure 8. Visual assessment of defects on bent oak: (a) no defects present, (b) wrinkling, buckling,
and kneading of fibers on concave side (I—failure type), (c) tensile brittle fiber break (II—failure type),
(d) buckling and kneading of fibers on concave side with additional tensile fiber break on convex
side (III—failure type).

3.4. Physical and Acoustic Properties of Bent Oak Wood

The average density of oak wood at an average final MC of 8.4% was 634 kg/m3

(CoV = 8.1%; CoV—Coefficient of Variation), which is lower compared to the results of
other studies on this species [23–26]. Some studies suggest that the lignin content decreases
with increasing density of oak wood, which could affect the bending capacity of the
wood [27,28]. No significant differences were found between the mean values of the groups
(ρG1 = 640 kg/m3, ρG2 = 635 kg/m3, ρG3 = 624 kg/m3, ρG4 = 638 kg/m3) (Figure 9), which
does not directly indicate possible chemical differences between the studied specimens of
each group. The latter would have to be confirmed by further investigations.
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Figure 9. Density and its variation of oak wood specimens in tested groups G1. . . G4 (× mean,
◦ outlier).

In the straight part of the successfully bent oak specimens, we determined a mean
ultrasonic velocity of less than 4500 m/s (vS) and a corresponding modulus of elasticity
(MOE) of less than 13 GPa in all groups studied. There was a downward trend in the mean
ultrasound velocity of specimens in groups G1 to G4 (vS-G1 = 4470 m/s, vS-G2 = 4450 m/s,
vS-G3 = 4440 m/s, vS-G4 = 4220 m/s). We also confirmed a trend of decreasing stiffness from
G1 to G4 (MOEG1 = 12.8 GPa, MOEG2 = 12.8 GPa, MOEG3 = 12.5 GPa, MOEG4 = 11.4 GPa).
However, the differences between the means were not significant for both vS and MOE,
except for G4, where the values were significantly lower than for the others (G1, G2, and
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G3; ANOVA, p < 0.05) (Figure 10). It seems that part of the best bending performance we
have confirmed in group G4 is also due to the slightly lower stiffness of the specimens.
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Figure 10. Ultrasound velocity (vS) (a) and modulus of elasticity (MOE) (b) in tested groups G1. . . G4:
(a) determined in the straight part of bent oak specimens (×mean, ◦ outlier).

In a straight part of the rejected samples, we measured vS above 4500 m/s and MOE
above 13 GPa. We could not find any characteristic trend in the change of values between
the groups of rejected specimens (vS-G1 = 4550 m/s, vS-G2 = 4620 m/s, vS-G3 = 4650 m/s,
vS-G4 = 4540 m/s; MOEG1 = 13.4 GPa, MOEG2 = 13.7 GPa, MOEG3 = 13.6 GPa,
MOEG4 = 13.3 GPa). However, when we compare the values of the rejected specimens
with those of the successfully bent specimens, we find that vS and MOE of these two
categories are different in groups G3 and G4. Thus, it can be seen that the initial lower MOE
of the specimens has a significant effect on the bending success. Only in groups G3 and G4
was the bending success significantly higher than in G1 and G2, which, in addition to the
correspondingly high wood MC, could also be due to the lower MOE of the specimens in G3
and G4. Previous research has also shown that less stiff wood is easier to bend [4,15,18,19].

We measured a much lower average ultrasound velocity in the bent region of the
specimens (vB = 2270 m/s) than in their straight part (vS = 4505 m/s) (Figure 11a). This
is partly due to the curvature itself, as the sound waves can propagate along a shortcut
between the two probes and thus across the wood grain where they would otherwise be
slower [29–31]. The compression deformation of the wood tissue in the curved region of
the specimens could also be a reason. Ultrasound velocities greater than 2300 m/s were
measured in the G1 and G2 specimens for both the successfully bent and rejected specimens.
No differences in mean values were observed between the two groups (G1 and G2) and
the two categories (accepted and rejected). For specimens in groups G3 and G4, the vB was
lower and slightly below 2250 m/s. The differences between the two groups and between
the two categories of specimens were also statistically insignificant (t-test; p > 0.05).
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It was found that the relative ultrasound velocity in the bent region of the specimens
(vB), represented as the ratio between the ultrasound velocity in the bent region and in the
straight portion (vB/vS), was related to the bending success of the specimens. This ratio
averaged above 0.51 for successfully bent specimens and below 0.50 for rejected specimens,
regardless of test group (G1. . . G4). Due to considerable variability, the vB/vS ratio was
significantly lower in the rejected compared to the accepted specimens only in groups G2
and G4. Shear ultrasound waves are commonly used to detect internal defects in some
other materials [32], and we intend to include them in future studies.

4. Conclusions

Bending of European oak solid wood, by studying the influence of wood moisture
content and previous drying methods on bending ability in industrial tests and also using
non-destructive techniques, led to the following conclusions:

• In order to achieve low rejection rate in the bending process, the process parameters,
i.e., the time and the final moisture content for the different processing stages, must be
well-controlled, as the margin between time and moisture content for optimal bending
is very narrow.

• A method in which the oak wood is predried in one step to a nominal final moisture
content of 8% and the specimens are then bent is not practical because of the low bend-
ing deformability and low compressibility on the concave side and tensile ductility on
the convex side.

• The study showed that the initial lower MOE in addition to the proper moisture content
before bending (MC ≥ 16%) significantly affected the bendability and acceptance rate
of the oak specimens.

• In addition to visual assessment, the acceptance rate of bent solid oak can be deter-
mined non-destructively from the ratio of the ultrasound velocity in the straight and
bent region (vB/vS) of the specimens.
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