

Biped Robot Walking based on Deep

Reinforcement Learning

Tomislav Tadić* and Petar Ćurković*
* Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia

tomitadic97@gmail.com; pcurkovic@fsb.hr

Abstract - In this paper a 6 DOF biped robot model is

designed, and deep reinforcement machine learning methods

are implemented for the robot to learn efficient walking

following a straight line. Detailed procedure of the robot

design, development of a Simulink model and

implementation of learning procedures is presented. Two

approaches were compared for motion learning – Deep

Deterministic Policy Gradient (DDPG), and Twin-Delayed

Deep Deterministic Policy Gradient (TD3). The results show

that both approaches are successful in generating a model

with free continuous action learning and input to action

mapping. Additionally, our results show that the TD3

algorithm outperforms the DDPG algorithm in the problem

as formulated in this study.

Keywords – reinforcement learning; artificial neural

network; biped robot model; agent; environment; Matlab;

Simulink; DDPG algorithm; TD3 algorithm

I. INTRODUCTION

The field of machine learning (ML) has made significant

progress in various applications over the last few years,

from robotics, image analysis and generation to computer

games to name a few. An important aspect of inherently

unstable mechanical systems, such as inverse pendulum,

or humanoid robotics is finding efficient control laws to

enable stable and efficient walking. This is not a simple

errand, and many traditional [1-3] and AI-based

approaches [4-8] exist trying to efficiently solve it. In this

study, we focus on implementing and comparing two ML

approaches to a bipedal robot model. The motivation is to

get a deeper insight in both methods behavior and

suitability to solve the problem of generating a stable and

efficient gait for the two-legged motion following a

straight line. We further plan to expand the model to

include obstacles, stairs and slopes in the environment,

based on results of this study.

II. REINFORCEMENT LEARNING

Reinforcement learning is a goal-oriented computing
approach, where a computer learns to perform a task by
interacting with an unknown dynamic environment. This
approach to learning allows a computer to make a series of
decisions to maximize the cumulative reward for a task
without human intervention and without explicit
programming to accomplish that task [9].

The goal of reinforcement learning is to train an agent
to perform a task within an unfamiliar environment. The
agent receives observations and rewards from the
environment and sends actions to the environment. The

reward is a measure of how successful the action is in
meeting the goal of the task. The agent contains two
components: a policy (a set of behavioral rules) and a
learning algorithm. Policy is a mapping that selects actions
based on observations from the environment. Typically, a
policy is a function approximator with adjustable
parameters, such as a deep neural network. The learning
algorithm continuously updates policy parameters based on
actions, observations and rewards. The goal of the learning
algorithm is to find the optimal policy that maximizes the
cumulative reward received while performing the task.

III. IMPLEMENTATION OF REINFORCEMENT LEARNING ON A

BIPED ROBOT MODEL

A. Creation of a robot model

The parts of the robot model, as shown in Fig. 1, were
designed in the SolidWorks software, and in the same
software they were joined into an assembly, in which the
mutual relations of the parts and the revolute joints were
defined. A total of 6 joints are defined (hip, knee and ankle
for both legs of the robot model).

Figure 1. Biped robot model assembly (in SolidWorks)

B. Transferring the model to the Simulink environment

The first step in transferring a CAD model to Matlab is
to create a translatory .xml object which can be loaded to
many physical simulators, Matlab included. To open the
.xml file in Simulink it is necessary to write "smimport" in
Matlab and put the name of the .xml file in brackets as an
argument, which is shown in Fig. 2.

Figure 2. Opening the .xml file in Matlab

This opens a block diagram of the .xml file in Simulink,
as shown in Fig. 3.

Figure 3. Block diagram of the basic robot model in Simulink

MIPRO 2023, May 22 - 26, 2023, Opatija, Croatia

344Authorized licensed use limited to: University of Zagreb. Downloaded on July 04,2023 at 08:22:27 UTC from IEEE Xplore. Restrictions apply.

Starting the Simulink model from the figure above
displays the basic model of the robot (modeled in
SolidWorks) within the Simulink environment, which is
shown in Fig. 4. However, that model needs to be adapted
to implement reinforcement learning.

Figure 4. The basic model of the robot in the Simulink environment

C. Adapting the model to implement reinforcement

learning

Figure 5. Block diagram of the adapted robot model

Fig. 5 shows the block diagram of the adapted robot
model. A subsystem named "World and Ground" was
added to the basic model. This subsystem is shown in detail
in Fig. 6. It is important to note that the "World Frame"
block (the block with the letter "W") was added from the
Simulink library, so it is not a copied block that can be seen
in the fig. 3 which shows the basic model of the robot from
the .xml file (that block has been deleted).

Figure 6. Subsystem "World and Ground"

The "6-DOF Joint" block, which represents a ball joint
with 6 degrees of freedom of movement, also from the
Simulink library, was added. This joint is connected to the
torso of the robot model, because the torso must be allowed
to move freely during walking, so the torso must not be
fixed. For a nicer display during gait simulation, a curve in
the positive direction of the X axis has been added to the
base. This is the block that is located below the "6-DOF
Joint" block in the model (see fig. 5). Fig. 7 shows the
"Robot leg R" subsystem, which represents the modified
model of the robot's right leg. For the joints, blocks
provided by the Matlab team that created specific blocks
for applying reinforcement learning to bipedal robot
models were used. These joint blocks, shown on Fig. 8, are
controllable via torques (port “t”), which the model will
receive from the RL agent in the reinforcement learning
process.

Figure 7. Subsystem "Robot leg R"

In addition, they have an output port ("meas") through
which they send information about the current angle,
angular velocity and applied torque on each individual joint
to the "Measurement Package" block.

Figure 8. Layout of a custom joint block for the robot model

Fig. 9 shows the "Foot and Contact_R" subsystem. This
subsystem serves for the realization of walking, that is, the
establishment of contact between the robot and the ground.
It shows the implementation of the "Spatial Contact Force"
block from the Simulink library, which can be used to
model the contact between two surfaces and define the
parameters of that contact. In the example of a walking
robot, the modeled contact is the contact between the
robot's foot and the surface on which the robot walks. In
this subsystem, it is visible that four "Spatial Contact
Force" blocks are connected to four ball blocks. Four balls
are placed in the four corners of the robot's foot model, thus
realizing contact at four points of contact between the
robot's foot and the surface on which the robot walks.

Figure 9. Subsystem "Foot and Contact_R"

 Fig. 10 provides a visualization of the defined
coordinate systems for the balls ("F1", "F2", "F3" and
"F4"), as well as the coordinate system "A", which defines
the geometric connection between the foot and the ankle
joint. The appearance of the ”Spherical Solid” block is also
shown.

Figure 10. Defined coordinate systems for balls and block ”Spherical

Solid”

345Authorized licensed use limited to: University of Zagreb. Downloaded on July 04,2023 at 08:22:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 11 shows the " Package Measurements " block to
which the contact data (total normal force and friction force
between the foot and the surface) and data from the joints
(ankle, knee and hip) are sent. The data from the joints
come in the packages of three data from each joint (angle,
angular velocity and torque), so it is necessary to unpack
them into individual signals. "Extract Measurements"
blocks are used for unpacking.

Figure 11. Block " Package Measurements "

All parts of the "Robot leg R" subsystem (see Fig. 7) of
the adapted robot model are hereby described. The "Robot
Leg L" subsystem is completely analogous, so there is no
need to show and describe it. Fig. 12 shows the
"Observations" block in which all measurements of the
model adjusted for reinforcement learning are combined.
These are measurements from the left and right leg of the
robot (total of 22 data, 11 per leg), and data on the state of
the torso of the robot model connected to the ball joint (6
degrees of freedom of movement) which are extracted
using the Simulink block " Transform sensor". This is 12
additional data (position of the torso along the x, y and z-
axis, velocity of the torso in the directions of the x, y and z-
axis, acceleration of the torso in the direction of the x, y and
z-axis, angular velocity of the torso around the x, y and z-
axis) . In addition, 3 more data are considered, which are
obtained using the Matlab function "calcAltitude" and 1
data on the total applied power to actuate the joints of both
legs of the robot model (see Fig. 13). So the observations
consist of a total of 38 (22+12+3+1=38) data on the robot
model.

Figure 12. “Observations“ block

Figure 13. "Calculate Actuator Power" subsystem

Fig. 14 shows the appearance of the robot model in the
initial position on the ground and at the beginning of the
curve in the x-axis direction. The positions of the balls on
the robot's feet, which are connected to the "Spatial Contact
Force" blocks and through which the detection of the foot's
contact with the ground was achieved, enabling the
simulation of walking are visible.

Figure 14. Initial position of the robot model for learning

Fig. 15 shows the behavior of the robot model when
starting the simulation in the Simulink environment. A
simulated gravitational force acts on the robot, and since
the robot's joints are not controlled by anything, the robot
falls after a while. Since the contact between the foot and
the surface is defined, the robot remains in a "hanging
position". Contact is not defined on other parts of the robot
model, so the torso and legs fall through the base.

Figure 15. Behavior of the robot model without control when starting

the simulation

Now it is necessary to find a control law that will enable
the robot to walk on the surface without falling and with as
little deviation as possible from the black line shown. As
previously mentioned, it is a complex problem to solve
using traditional control methods, which motivates the
implementation of ML methods presented in this paper.

Figure 16. Model of a walking robot ready for addition of a control

system

Fig. 16 shows model of a walking robot ready for
addition of a control system. Input and output ports for
communication with the control system were added to the
previous model (see Fig. 5), and the input port was scaled
(since the actions sent by the RL agent in reinforcement
learning will be limited to values between -1 and 1). In
addition to scaling, the input will be a vector of 6 elements
(torques to drive the 6 joints of the robot model), so it is
necessary to separate them into two vectors of three
elements each for the left and right legs of the robot.

Fig. 17 shows the appearance of the control system
inherent in reinforcement learning. Such systems generally
consist of an RL (Reinforcement Learning) Agent
consisting of an RL algorithm and artificial neural

346Authorized licensed use limited to: University of Zagreb. Downloaded on July 04,2023 at 08:22:27 UTC from IEEE Xplore. Restrictions apply.

networks, the number of which depends on the type of
applied RL algorithm. DDPG (Deep Deterministic Policy
Gradient) Agent, which consists of two artificial neural
networks ("Critic" and "Actor") and TD3 (Twin-Delayed
Deep Deterministic Policy Gradient) Agent, which consists
of three artificial neural networks ("Actor" and two "Critic"
networks) were applied in this work. Network structures are
selected by the user. In addition to the Agent, such systems
must also have an environment in which the Agent operates
and tries to learn to perform a certain task. In this example,
the environment is represented by a walking robot model.
The means of communication between the Agent and the
environment must also be defined, observations (from the
environment) and actions (from the Agent) are used for
this. The figure below shows the layout of the implemented
reinforcement learning system, which is used to control the
movement of the robot model (saved under the name
"MY_ROBOT.slx").

Figure 17. A complete model for implementing reinforcement learning

From a total of 38 data from the robot model, 25 data
are selected for the final observations. Some of the selected
observations are further processed. The initial position of
the torso along the z-axis is subtracted from the current
position of the model's torso along the z-axis, because the
deviation of the torso's position from the initial position is
important for gait learning (the goal is the smallest possible
deviation along the z-axis), and this difference is scaled to
have a greater influence on the behavior of the robot. In
addition, the actions generated by the RL Agent in the
previous learning step are added to the observations, that's
6 more pieces of data. So, in total, 31 (25+6) observations
are continuously sent to the RL Agent during the
reinforcement learning process.

Fig. 18 shows the "Calculate Reward" subsystem,
where the reward function is formulated, that is, the reward
signal is calculated. For this example of a walking robot,
the reward function in mathematical form reads:

𝑟𝑡 = 𝑣𝑥 + 0.0625 − 25 ∗ �̂�2 − 0.05 ∗ ∑ (𝑢𝑡−1
𝑖)2 − 3 ∗ 𝑦2

𝑖 ()

Whereby �̂� = 𝑧 − 𝑧0 ; 𝑧0 –initial position of the torso
along the z-axis

The desired behavior of the robot when walking can be
deduced from the reward function shown in (1). The first
term of the equation rewards the speed of movement along
the x-axis, the second term rewards the duration of the walk
(for each time step of the simulation "Ts", the Agent
receives a reward of 0.0625, until the simulation is
interrupted, e.g. due to the fall of the robot), the third term
penalizes the deviation from the initial position of the torso
along the z-axis, the fourth term penalizes the total power
required to move the robot, excessive torques in the joints

are not desirable (this prevents the robot's legs from being
thrown and uneven movement of the robot's left and right
legs) and the fifth term penalizes the lateral deviation of the
robot from x-axis (along the y-axis in both directions). The
image below shows the implementation of the above
mathematical reward function modeled in Simulink.

Figure 18. "Calculate Reward" subsystem

Fig. 19 shows the subsystem "Check if Done". Here, the
conditions for breaking an episode when training an RL
Agent are defined. The maximum allowed lateral deviation
from the x-axis in the y-axis direction is defined. The
minimum amount of position of the robot's torso along the
z-axis for detecting the robot's fall is also set. In addition,
the maximum allowed rotation angles of the robot's torso
around the x, y and z-axis are set, because they indicate a
loss of balance and a fall of the robot, that is, an unnatural
movement of the robot that we want to avoid.

Figure 19. “Check if Done“ subsystem

This describes the created Simulink environment for
training RL agents. Now follows a brief description of the
created artificial neural networks and options for training
RL agents, as well as displays of training results and
simulation displays.

Fig. 20 shows the appearance and properties of the
"Actor" neural network (created in the Matlab script
"my_neural_networks.m") for reinforcement learning
purposes on the example of a bipedal walking robot.

Figure 20. Appearance and properties of the created "Actor" neural

network

347Authorized licensed use limited to: University of Zagreb. Downloaded on July 04,2023 at 08:22:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 21 shows the appearance and properties of the
"Critic" neural network (created in the Matlab script
"my_neural_networks.m") for reinforcement learning
purposes on the example of a bipedal walking robot.

Figure 21. Appearance and properties of the created "Critic" neural

network

D. Matlab script for training DDPG (Deep

Deterministic Policy Gradient) Agent

A Matlab script containing the code for training the RL
DDPG Agent was created. Information about observations
and actions are created. As mentioned earlier, there is a total
of 31 observations for Agent training and 6 actions which
are limited to values between -1 and 1 (for
better/faster/easier training of artificial neural networks).
An environment is created, which is connected to the
Simulink model of the robot (see Fig. 17). For training
purposes, a reset function is defined, i.e. returning the robot
to its initial position after each training episode. Then the
Matlab script "my_neural_networks" is called, which
creates artificial neural networks for the RL Agent in the
desired structure. After that, the Matlab script
"createDDPGOptions" is called, which creates the desired
RL Agent options.

 An Agent is then created and its training begins
according to the defined training options from the
"createDDPGOptions" script. During training, those
Agents that meet the saving condition (which is defined in
the "createDDPGOptions" script) are saved in the
"savedAgents" folder. After training, saved Agents can be
simulated within a Simulink robot model (see Fig. 17) or
with Matlab's Reinforcement Learning Designer app.

E. Training the RL Agent that controls the gait of the

robot model

By starting the script for loading the parameters of the
robot model, and then the script for creating and training
the DDPG Agent, the window shown in Fig. 22 opens and
the training of the DDPG Agent, which operates within the
environment of the Simulink model of the walking robot
named "MY_ROBOT.slx", begins. The goal of the training
is to maximize the total reward, and in the Matlab script
"createDDPGOptions" the conditions for the maximum
number of episodes are defined, as well as the conditions
for saving good Agents (all episodes that reach a reward of
120 or more), as well as the condition for terminating Agent
training (if the average reward reaches a value of 110).

Figure 22. Training of DDPG Agent

Fig. 23 shows the movement of the robot model at the
beginning of training. It is obvious that the robot does not
walk correctly, but this is normal considering that the RL
DDPG Agent does not yet have experience and does not
have developed rules of behavior (that is, weight factors in
neural networks) to achieve large amounts of the reward
function.

Figure 23. Movement of the robot model at the beginning of training

Fig. 24 contains a graph showing the layout of the value
of the reward function for individual episodes during Agent
training. The blue lines and circles indicate the rewards of
individual episodes, the orange curve shows the average
reward (there is a positive trend during the learning of the
Agent), and the yellow curve represents the "Critic" neural
network's assessment of the quality of behavior, i.e. the
predicted reward at the start of each individual learning
episode.

Figure 24. Graph with the values of the reward function for individual

episodes during DDPG Agent training

Fig. 25 shows the gait simulation of a bipedal robot
model controlled by a trained Agent. The robot crosses the
marked path and continues to walk without falling (if the
simulation time was allowed to be longer, the robot would
have traveled a greater distance). This indicates a well-
found control law. It is also noticeable that the robot does
not deviate much from the x-axis during walking and does
not swing too much left-right during walking, nor does its
torso lean back, that is, it does not deviate much from the
initial position of the torso along the z-axis. This is
consistent with the reward function model.

348Authorized licensed use limited to: University of Zagreb. Downloaded on July 04,2023 at 08:22:27 UTC from IEEE Xplore. Restrictions apply.

Figure 25. Flow of gait simulation of a bipedal robot model

Fig. 26 shows the DDPG Agent training graph for the
case when learning was not very successful. Given that
DDPG as an RL algorithm is quite stochastic, quality
learning of the Agent cannot be guaranteed every time. This
graph is shown to illustrate the described nature of the
DDPG algorithm.

Figure 26. Training graph of the DDPG RL Agent for the case of failed

learning

Training of the robot model was also done using TD3
algorithm after making the necessary adjustments in Matlab
scripts and its graph is shown in Fig. 27.

Figure 27. Training graph of a TD3 RL Agent

IV. CONCLUSION

If we compare the reinforcement learning graphs for the
DDPG and TD3 RL algorithms, we can conclude that the
DDPG algorithm is more aggressive, which is reflected in
the fact that it has larger oscillations in episodic rewards in
earlier learning episodes. With the DDPG algorithm,
reward amounts of around 100 were achieved already
around the 1800th learning episode, which is much faster
compared to the TD3 algorithm, which only achieves
reward amounts of around 20 around the 1800th episode.
Reward amounts of around 120 were achieved with the
DDPG algorithm around 1900 episodes, and with the TD3
algorithm only around the 2900th learning episode. On the
other hand, the obvious advantage of the TD3 algorithm is
that the average reward per episode has a continuous and
stable growth, which promises better control laws
proportional to the learning time. The same cannot be said
for the DDPG algorithm, because even though it reaches
good control laws faster, it does not guarantee a continuous
growth of the average reward, that is, with a longer learning
time, there may be a decline in the quality of the control
laws. This flaw of the DDPG algorithm is very well shown
by the graph in Fig. 26. Therefore, the conclusion is that the
TD3 algorithm has an advantage in the application of
reinforcement learning for finding control laws for the gait
of a bipedal humanoid robot. However, it would not be
impossible to find quality solutions using the DDPG
algorithm as well, since it allowes greater exploration.

REFERENCES

[1] Reher, J. and Ames, A.D., 2021. Dynamic walking: Toward agile
and efficient bipedal robots. Annual Review of Control, Robotics,
and Autonomous Systems, 4, pp.535-572.

[2] Gong, Y., Hartley, R., Da, X., Hereid, A., Harib, O., Huang, J.K.
and Grizzle, J., 2019, July. Feedback control of a cassie bipedal
robot: Walking, standing, and riding a segway. In 2019 American
Control Conference (ACC) (pp. 4559-4566). IEEE.

[3] Kim, I.S., Han, Y.J. and Hong, Y.D., 2019. Stability control for
dynamic walking of bipedal robot with real-time capture point
trajectory optimization. Journal of Intelligent & Robotic
Systems, 96, pp.345-361.

[4] Z. Li et al., "Reinforcement Learning for Robust Parameterized
Locomotion Control of Bipedal Robots," 2021 IEEE International
Conference on Robotics and Automation (ICRA), Xi'an, China,
2021, pp. 2811-2817, doi: 10.1109/ICRA48506.2021.9560769.

[5] Rudin, N., Kolvenbach, H., Tsounis, V. and Hutter, M., 2021. Cat-
like jumping and landing of legged robots in low gravity using deep
reinforcement learning. IEEE Transactions on Robotics, 38(1),
pp.317-328.

[6] Siekmann, J., Green, K., Warila, J., Fern, A. and Hurst, J., 2021.
Blind bipedal stair traversal via sim-to-real reinforcement
learning. arXiv preprint arXiv:2105.08328.

[7] Li, T., Geyer, H., Atkeson, C.G. and Rai, A., 2019, May. Using deep
reinforcement learning to learn high-level policies on the atrias
biped. In 2019 International Conference on Robotics and
Automation (ICRA) (pp. 263-269). IEEE.

[8] T. Tiong, I. Saad, K. T. K. Teo and H. b. Lago, "Deep
Reinforcement Learning with Robust Deep Deterministic Policy
Gradient," 2020 2nd International Conference on Electrical,
Control and Instrumentation Engineering (ICECIE), Kuala
Lumpur, Malaysia, 2020, pp. 1-5, doi:
10.1109/ICECIE50279.2020.9309539.

[9] Russell, S.J., 2010. Artificial intelligence a modern approach.
Pearson Education, Inc.

349Authorized licensed use limited to: University of Zagreb. Downloaded on July 04,2023 at 08:22:27 UTC from IEEE Xplore. Restrictions apply.

