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Abstract - In this paper a 6 DOF biped robot model is 

designed, and deep reinforcement machine learning methods 

are implemented for the robot to learn efficient walking 

following a straight line. Detailed procedure of the robot 

design, development of a Simulink model and 

implementation of learning procedures is presented. Two 

approaches were compared for motion learning – Deep 

Deterministic Policy Gradient (DDPG), and Twin-Delayed 

Deep Deterministic Policy Gradient (TD3). The results show 

that both approaches are successful in generating a model 

with free continuous action learning and input to action 

mapping. Additionally, our results show that the TD3 

algorithm outperforms the DDPG algorithm in the problem 

as formulated in this study. 
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I. INTRODUCTION 

The field of machine learning (ML) has made significant 

progress in various applications over the last few years, 

from robotics, image analysis and generation to computer 

games to name a few. An important aspect of inherently 

unstable mechanical systems, such as inverse pendulum, 

or humanoid robotics is finding efficient control laws to 

enable stable and efficient walking. This is not a simple 

errand, and many traditional [1-3] and AI-based 

approaches [4-8] exist trying to efficiently solve it. In this 

study, we focus on implementing and comparing two ML 

approaches to a bipedal robot model. The motivation is to 

get a deeper insight in both methods behavior and 

suitability to solve the problem of generating a stable and 

efficient gait for the two-legged motion following a 

straight line. We further plan to expand the model to 

include obstacles, stairs and slopes in the environment, 

based on results of this study. 

II. REINFORCEMENT LEARNING 

Reinforcement learning is a goal-oriented computing 
approach, where a computer learns to perform a task by 
interacting with an unknown dynamic environment. This 
approach to learning allows a computer to make a series of 
decisions to maximize the cumulative reward for a task 
without human intervention and without explicit 
programming to accomplish that task [9]. 

The goal of reinforcement learning is to train an agent 
to perform a task within an unfamiliar environment. The 
agent receives observations and rewards from the 
environment and sends actions to the environment. The 

reward is a measure of how successful the action is in 
meeting the goal of the task. The agent contains two 
components: a policy (a set of behavioral rules) and a 
learning algorithm. Policy is a mapping that selects actions 
based on observations from the environment. Typically, a 
policy is a function approximator with adjustable 
parameters, such as a deep neural network. The learning 
algorithm continuously updates policy parameters based on 
actions, observations and rewards. The goal of the learning 
algorithm is to find the optimal policy that maximizes the 
cumulative reward received while performing the task. 

III. IMPLEMENTATION OF REINFORCEMENT LEARNING ON A 

BIPED ROBOT MODEL 

A. Creation of a robot model 

The parts of the robot model, as shown in Fig. 1, were 
designed in the SolidWorks software, and in the same 
software they were joined into an assembly, in which the 
mutual relations of the parts and the revolute joints were 
defined. A total of 6 joints are defined (hip, knee and ankle 
for both legs of the robot model). 

 

Figure 1.  Biped robot model assembly (in SolidWorks) 

B. Transferring the model to the Simulink environment 

The first step in transferring a CAD model to Matlab is 
to create a translatory .xml object which can be loaded to 
many physical simulators, Matlab included. To open the 
.xml file in Simulink it is necessary to write "smimport" in 
Matlab and put the name of the .xml file in brackets as an 
argument, which is shown in Fig. 2. 

 

Figure 2.  Opening the .xml file in Matlab 

This opens a block diagram of the .xml file in Simulink, 
as shown in Fig. 3. 

 

Figure 3.  Block diagram of the basic robot model in Simulink 
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Starting the Simulink model from the figure above 
displays the basic model of the robot (modeled in 
SolidWorks) within the Simulink environment, which is 
shown in Fig. 4. However, that model needs to be adapted 
to implement reinforcement learning. 

 

Figure 4.  The basic model of the robot in the Simulink environment 

C. Adapting the model to implement reinforcement 

learning 

 

Figure 5.  Block diagram of the adapted robot model 

Fig. 5 shows the block diagram of the adapted robot 
model. A subsystem named "World and Ground" was 
added to the basic model. This subsystem is shown in detail 
in Fig. 6. It is important to note that the "World Frame" 
block (the block with the letter "W") was added from the 
Simulink library, so it is not a copied block that can be seen 
in the fig. 3 which shows the basic model of the robot from 
the .xml file (that block has been deleted). 

 

Figure 6.  Subsystem "World and Ground" 

The "6-DOF Joint" block, which represents a ball joint 
with 6 degrees of freedom of movement, also from the 
Simulink library, was added. This joint is connected to the 
torso of the robot model, because the torso must be allowed 
to move freely during walking, so the torso must not be 
fixed. For a nicer display during gait simulation, a curve in 
the positive direction of the X axis has been added to the 
base. This is the block that is located below the "6-DOF 
Joint" block in the model (see fig. 5). Fig. 7 shows the 
"Robot leg R" subsystem, which represents the modified 
model of the robot's right leg. For the joints, blocks 
provided by the Matlab team that created specific blocks 
for applying reinforcement learning to bipedal robot 
models were used. These joint blocks, shown on Fig. 8, are 
controllable via torques (port “t”), which the model will 
receive from the RL agent in the reinforcement learning 
process. 

 

Figure 7.  Subsystem "Robot leg R" 

In addition, they have an output port ("meas") through 
which they send information about the current angle, 
angular velocity and applied torque on each individual joint 
to the "Measurement Package" block. 

 

Figure 8.  Layout of a custom joint block for the robot model 

Fig. 9 shows the "Foot and Contact_R" subsystem. This 
subsystem serves for the realization of walking, that is, the 
establishment of contact between the robot and the ground. 
It shows the implementation of the "Spatial Contact Force" 
block from the Simulink library, which can be used to 
model the contact between two surfaces and define the 
parameters of that contact. In the example of a walking 
robot, the modeled contact is the contact between the 
robot's foot and the surface on which the robot walks. In 
this subsystem, it is visible that four "Spatial Contact 
Force" blocks are connected to four ball blocks. Four balls 
are placed in the four corners of the robot's foot model, thus 
realizing contact at four points of contact between the 
robot's foot and the surface on which the robot walks. 

 

Figure 9.  Subsystem "Foot and Contact_R" 

 Fig. 10 provides a visualization of the defined 
coordinate systems for the balls ("F1", "F2", "F3" and 
"F4"), as well as the coordinate system "A", which defines 
the geometric connection between the foot and the ankle 
joint. The appearance of the ”Spherical Solid” block is also 
shown. 

 

Figure 10.  Defined coordinate systems for balls and block ”Spherical 

Solid” 
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Fig. 11 shows the " Package Measurements " block to 
which the contact data (total normal force and friction force 
between the foot and the surface) and data from the joints 
(ankle, knee and hip) are sent. The data from the joints 
come in the packages of three data from each joint (angle, 
angular velocity and torque), so it is necessary to unpack 
them into individual signals. "Extract Measurements" 
blocks are used for unpacking. 

 

Figure 11.  Block " Package Measurements " 

All parts of the "Robot leg R" subsystem (see Fig. 7) of 
the adapted robot model are hereby described. The "Robot 
Leg L" subsystem is completely analogous, so there is no 
need to show and describe it. Fig. 12 shows the 
"Observations" block in which all measurements of the 
model adjusted for reinforcement learning are combined. 
These are measurements from the left and right leg of the 
robot (total of 22 data, 11 per leg), and data on the state of 
the torso of the robot model connected to the ball joint (6 
degrees of freedom of movement) which are extracted 
using the Simulink block " Transform sensor". This is 12 
additional data (position of the torso along the x, y and z-
axis, velocity of the torso in the directions of the x, y and z-
axis, acceleration of the torso in the direction of the x, y and 
z-axis, angular velocity of the torso around the x, y and z-
axis) . In addition, 3 more data are considered, which are 
obtained using the Matlab function "calcAltitude" and 1 
data on the total applied power to actuate the joints of both 
legs of the robot model (see Fig. 13). So the observations 
consist of a total of 38 (22+12+3+1=38) data on the robot 
model. 

 

Figure 12.  “Observations“ block 

 

Figure 13.  "Calculate Actuator Power" subsystem 

Fig. 14 shows the appearance of the robot model in the 
initial position on the ground and at the beginning of the 
curve in the x-axis direction. The positions of the balls on 
the robot's feet, which are connected to the "Spatial Contact 
Force" blocks and through which the detection of the foot's 
contact with the ground was achieved, enabling the 
simulation of walking are visible. 

 

Figure 14.  Initial position of the robot model for learning 

Fig. 15 shows the behavior of the robot model when 
starting the simulation in the Simulink environment. A 
simulated gravitational force acts on the robot, and since 
the robot's joints are not controlled by anything, the robot 
falls after a while. Since the contact between the foot and 
the surface is defined, the robot remains in a "hanging 
position". Contact is not defined on other parts of the robot 
model, so the torso and legs fall through the base. 

 

Figure 15.  Behavior of the robot model without control when starting 

the simulation 

Now it is necessary to find a control law that will enable 
the robot to walk on the surface without falling and with as 
little deviation as possible from the black line shown. As 
previously mentioned, it is a complex problem to solve 
using traditional control methods, which motivates the 
implementation of ML methods presented in this paper. 

 

Figure 16.  Model of a walking robot ready for addition of a control 

system 

Fig. 16 shows model of a walking robot ready for 
addition of a control system. Input and output ports for 
communication with the control system were added to the 
previous model (see Fig. 5), and the input port was scaled 
(since the actions sent by the RL agent in reinforcement 
learning will be limited to values between -1 and 1). In 
addition to scaling, the input will be a vector of 6 elements 
(torques to drive the 6 joints of the robot model), so it is 
necessary to separate them into two vectors of three 
elements each for the left and right legs of the robot.  

Fig. 17 shows the appearance of the control system 
inherent in reinforcement learning. Such systems generally 
consist of an RL (Reinforcement Learning) Agent 
consisting of an RL algorithm and artificial neural 
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networks, the number of which depends on the type of 
applied RL algorithm. DDPG (Deep Deterministic Policy 
Gradient) Agent, which consists of two artificial neural 
networks ("Critic" and "Actor") and TD3 (Twin-Delayed 
Deep Deterministic Policy Gradient) Agent, which consists 
of three artificial neural networks ("Actor" and two "Critic" 
networks) were applied in this work. Network structures are 
selected by the user. In addition to the Agent, such systems 
must also have an environment in which the Agent operates 
and tries to learn to perform a certain task. In this example, 
the environment is represented by a walking robot model. 
The means of communication between the Agent and the 
environment must also be defined, observations (from the 
environment) and actions (from the Agent) are used for 
this. The figure below shows the layout of the implemented 
reinforcement learning system, which is used to control the 
movement of the robot model (saved under the name 
"MY_ROBOT.slx"). 

 

Figure 17.  A complete model for implementing reinforcement learning 

From a total of 38 data from the robot model, 25 data 
are selected for the final observations. Some of the selected 
observations are further processed. The initial position of 
the torso along the z-axis is subtracted from the current 
position of the model's torso along the z-axis, because the 
deviation of the torso's position from the initial position is 
important for gait learning (the goal is the smallest possible 
deviation along the z-axis), and this difference is scaled to 
have a greater influence on the behavior of the robot. In 
addition, the actions generated by the RL Agent in the 
previous learning step are added to the observations, that's 
6 more pieces of data. So, in total, 31 (25+6) observations 
are continuously sent to the RL Agent during the 
reinforcement learning process. 

Fig. 18 shows the "Calculate Reward" subsystem, 
where the reward function is formulated, that is, the reward 
signal is calculated. For this example of a walking robot, 
the reward function in mathematical form reads: 

𝑟𝑡 = 𝑣𝑥 + 0.0625 − 25 ∗ �̂�2 − 0.05 ∗ ∑ (𝑢𝑡−1
𝑖 )2 − 3 ∗ 𝑦2

𝑖  () 

Whereby �̂� = 𝑧 − 𝑧0  ; 𝑧0 –initial position of the torso 
along the z-axis 

The desired behavior of the robot when walking can be 
deduced from the reward function shown in (1). The first 
term of the equation rewards the speed of movement along 
the x-axis, the second term rewards the duration of the walk 
(for each time step of the simulation "Ts", the Agent 
receives a reward of 0.0625, until the simulation is 
interrupted, e.g. due to the fall of the robot), the third term 
penalizes the deviation from the initial position of the torso 
along the z-axis, the fourth term penalizes the total power 
required to move the robot, excessive torques in the joints 

are not desirable (this prevents the robot's legs from being 
thrown and uneven movement of the robot's left and right 
legs) and the fifth term penalizes the lateral deviation of the 
robot from x-axis (along the y-axis in both directions). The 
image below shows the implementation of the above 
mathematical reward function modeled in Simulink. 

 

Figure 18.  "Calculate Reward" subsystem 

Fig. 19 shows the subsystem "Check if Done". Here, the 
conditions for breaking an episode when training an RL 
Agent are defined. The maximum allowed lateral deviation 
from the x-axis in the y-axis direction is defined. The 
minimum amount of position of the robot's torso along the 
z-axis for detecting the robot's fall is also set. In addition, 
the maximum allowed rotation angles of the robot's torso 
around the x, y and z-axis are set, because they indicate a 
loss of balance and a fall of the robot, that is, an unnatural 
movement of the robot that we want to avoid. 

 

Figure 19.  “Check if Done“ subsystem 

This describes the created Simulink environment for 
training RL agents. Now follows a brief description of the 
created artificial neural networks and options for training 
RL agents, as well as displays of training results and 
simulation displays. 

Fig. 20 shows the appearance and properties of the 
"Actor" neural network (created in the Matlab script 
"my_neural_networks.m") for reinforcement learning 
purposes on the example of a bipedal walking robot. 

 

Figure 20.  Appearance and properties of the created "Actor" neural 

network 
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Fig. 21 shows the appearance and properties of the 
"Critic" neural network (created in the Matlab script 
"my_neural_networks.m") for reinforcement learning 
purposes on the example of a bipedal walking robot. 

 

Figure 21.  Appearance and properties of the created "Critic" neural 

network 

D. Matlab script for training DDPG (Deep 

Deterministic Policy Gradient) Agent 

A Matlab script containing the code for training the RL 
DDPG Agent was created. Information about observations 
and actions are created. As mentioned earlier, there is a total 
of 31 observations for Agent training and 6 actions which 
are limited to values between -1 and 1 (for 
better/faster/easier training of artificial neural networks). 
An environment is created, which is connected to the 
Simulink model of the robot (see Fig. 17). For training 
purposes, a reset function is defined, i.e. returning the robot 
to its initial position after each training episode. Then the 
Matlab script "my_neural_networks" is called, which 
creates artificial neural networks for the RL Agent in the 
desired structure. After that, the Matlab script 
"createDDPGOptions" is called, which creates the desired 
RL Agent options. 

 An Agent is then created and its training begins 
according to the defined training options from the 
"createDDPGOptions" script. During training, those 
Agents that meet the saving condition (which is defined in 
the "createDDPGOptions" script) are saved in the 
"savedAgents" folder. After training, saved Agents can be 
simulated within a Simulink robot model (see Fig. 17) or 
with Matlab's Reinforcement Learning Designer app. 

E. Training the RL Agent that controls the gait of the 

robot model 

By starting the script for loading the parameters of the 
robot model, and then the script for creating and training 
the DDPG Agent, the window shown in Fig. 22 opens and 
the training of the DDPG Agent, which operates within the 
environment of the Simulink model of the walking robot 
named "MY_ROBOT.slx", begins. The goal of the training 
is to maximize the total reward, and in the Matlab script 
"createDDPGOptions" the conditions for the maximum 
number of episodes are defined, as well as the conditions 
for saving good Agents (all episodes that reach a reward of 
120 or more), as well as the condition for terminating Agent 
training (if the average reward reaches a value of 110). 

 

Figure 22.  Training of DDPG Agent 

Fig. 23 shows the movement of the robot model at the 
beginning of training. It is obvious that the robot does not 
walk correctly, but this is normal considering that the RL 
DDPG Agent does not yet have experience and does not 
have developed rules of behavior (that is, weight factors in 
neural networks) to achieve large amounts of the reward 
function. 

 

Figure 23.  Movement of the robot model at the beginning of training 

Fig. 24 contains a graph showing the layout of the value 
of the reward function for individual episodes during Agent 
training. The blue lines and circles indicate the rewards of 
individual episodes, the orange curve shows the average 
reward (there is a positive trend during the learning of the 
Agent), and the yellow curve represents the "Critic" neural 
network's assessment of the quality of behavior, i.e. the 
predicted reward at the start of each individual learning 
episode. 

 

Figure 24.  Graph with the values of the reward function for individual 

episodes during DDPG Agent training 

Fig. 25 shows the gait simulation of a bipedal robot 
model controlled by a trained Agent. The robot crosses the 
marked path and continues to walk without falling (if the 
simulation time was allowed to be longer, the robot would 
have traveled a greater distance). This indicates a well-
found control law. It is also noticeable that the robot does 
not deviate much from the x-axis during walking and does 
not swing too much left-right during walking, nor does its 
torso lean back, that is, it does not deviate much from the 
initial position of the torso along the z-axis. This is 
consistent with the reward function model. 
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Figure 25.  Flow of gait simulation of a bipedal robot model 

Fig. 26 shows the DDPG Agent training graph for the 
case when learning was not very successful. Given that 
DDPG as an RL algorithm is quite stochastic, quality 
learning of the Agent cannot be guaranteed every time. This 
graph is shown to illustrate the described nature of the 
DDPG algorithm. 

 

Figure 26.  Training graph of the DDPG RL Agent for the case of failed 

learning 

Training of the robot model was also done using TD3 
algorithm after making the necessary adjustments in Matlab 
scripts and its graph is shown in Fig. 27.  

 

Figure 27.  Training graph of a TD3 RL Agent 

 

IV. CONCLUSION 

If we compare the reinforcement learning graphs for the 
DDPG and TD3 RL algorithms, we can conclude that the 
DDPG algorithm is more aggressive, which is reflected in 
the fact that it has larger oscillations in episodic rewards in 
earlier learning episodes. With the DDPG algorithm, 
reward amounts of around 100 were achieved already 
around the 1800th learning episode, which is much faster 
compared to the TD3 algorithm, which only achieves 
reward amounts of around 20 around the 1800th episode. 
Reward amounts of around 120 were achieved with the 
DDPG algorithm around 1900 episodes, and with the TD3 
algorithm only around the 2900th learning episode. On the 
other hand, the obvious advantage of the TD3 algorithm is 
that the average reward per episode has a continuous and 
stable growth, which promises better control laws 
proportional to the learning time. The same cannot be said 
for the DDPG algorithm, because even though it reaches 
good control laws faster, it does not guarantee a continuous 
growth of the average reward, that is, with a longer learning 
time, there may be a decline in the quality of the control 
laws. This flaw of the DDPG algorithm is very well shown 
by the graph in Fig. 26. Therefore, the conclusion is that the 
TD3 algorithm has an advantage in the application of 
reinforcement learning for finding control laws for the gait 
of a bipedal humanoid robot. However, it would not be 
impossible to find quality solutions using the DDPG 
algorithm as well, since it allowes greater exploration. 
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