Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1282091

Measuring Search Engine Bias in European Women's Image Results using Machine Learning Algorithms


Pisker, Barbara; Đokić, Kristian; Martinović, Marko
Measuring Search Engine Bias in European Women's Image Results using Machine Learning Algorithms // Proceedings of the 5th International Conference on Recent Trends and Applications in Computer Science and Information Technology / Endrit, Xhina ; Klesti, Hoxha (ur.).
Tirana: University of Tirana, Faculty of Natural Sciences, Department of Informatics, 2023. str. 63-71 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1282091 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Measuring Search Engine Bias in European Women's Image Results using Machine Learning Algorithms

Autori
Pisker, Barbara ; Đokić, Kristian ; Martinović, Marko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 5th International Conference on Recent Trends and Applications in Computer Science and Information Technology / Endrit, Xhina ; Klesti, Hoxha - Tirana : University of Tirana, Faculty of Natural Sciences, Department of Informatics, 2023, 63-71

Skup
International Conference on Recent Trends and Applications in Computer Science and Information Technology (RTA-CSIT)

Mjesto i datum
Tirana, Albanija, 26.04.2023. - 27.04.2023

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Nudity score ; machine learning ; gender bias ; search engine

Sažetak
This paper focuses on the issue of image search engine results, which many authors claim are the result of biases, thereby multiplying those same biases. The Google search engine was analysed, where images of women from nine countries of the European Union were searched, but using three different languages to generate queries. In this way, we tried to compare the prejudices of other language groups reflected in the results obtained using the search engine. Two thousand seven hundred images of women were collected, and to quantify the results, an artificial intelligence algorithm was used to calculate the probability of nudity in the image. The hypothesis that there is no difference between the perception of women for a particular country by English, Chinese and Russian language users was generally rejected because there are statistically significant differences in 6 out of 9 countries.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti, Sociologija



POVEZANOST RADA


Ustanove:
Sveučilište u Slavonskom Brodu,
Fakultet turizma i ruralnog razvoja u Požegi

Profili:

Avatar Url Barbara Pisker (autor)

Avatar Url Kristian Đokić (autor)

Avatar Url Marko Martinović (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Pisker, Barbara; Đokić, Kristian; Martinović, Marko
Measuring Search Engine Bias in European Women's Image Results using Machine Learning Algorithms // Proceedings of the 5th International Conference on Recent Trends and Applications in Computer Science and Information Technology / Endrit, Xhina ; Klesti, Hoxha (ur.).
Tirana: University of Tirana, Faculty of Natural Sciences, Department of Informatics, 2023. str. 63-71 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Pisker, B., Đokić, K. & Martinović, M. (2023) Measuring Search Engine Bias in European Women's Image Results using Machine Learning Algorithms. U: Endrit, X. & Klesti, H. (ur.)Proceedings of the 5th International Conference on Recent Trends and Applications in Computer Science and Information Technology.
@article{article, author = {Pisker, Barbara and \DJoki\'{c}, Kristian and Martinovi\'{c}, Marko}, year = {2023}, pages = {63-71}, keywords = {Nudity score, machine learning, gender bias, search engine}, title = {Measuring Search Engine Bias in European Women's Image Results using Machine Learning Algorithms}, keyword = {Nudity score, machine learning, gender bias, search engine}, publisher = {University of Tirana, Faculty of Natural Sciences, Department of Informatics}, publisherplace = {Tirana, Albanija} }
@article{article, author = {Pisker, Barbara and \DJoki\'{c}, Kristian and Martinovi\'{c}, Marko}, year = {2023}, pages = {63-71}, keywords = {Nudity score, machine learning, gender bias, search engine}, title = {Measuring Search Engine Bias in European Women's Image Results using Machine Learning Algorithms}, keyword = {Nudity score, machine learning, gender bias, search engine}, publisher = {University of Tirana, Faculty of Natural Sciences, Department of Informatics}, publisherplace = {Tirana, Albanija} }

Časopis indeksira:


  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font