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Statistics and machine learning (1/2)

*statistics ==  (traditional) data models

• Traditional statistical (data) models
• interpretable coefficients with CIs
• inferences about the population: testing

  
• Machine Learning (ML) models

• optimizes the generalization error (prediction 
accuracy) via cross-validation 

• can handle unwieldy amounts of variables
• usually assumption-free => flexible

• Hard to compare in a quantifible way
• often compared exclusively in terms of prediction

[1] D. Bzdok, N. Altman & M. Krzywinski , 2018



*Hidden/Extra

A few examples: comparison of (linear) Cox models to ML models

*no statistical testing, Cox model is simply fit to 
the data (no interactions or transformations) 

and treated as a ML model

*t-test for CV results (optimistic variance 
estimation), Cox model is simply fit to the data 

(no interactions or transformations) and 
treated as a ML model

*no statistical testing, Cox model is simply fit to 
the data (no interactions or transformations) 

and treated as a ML model



Statistics and machine learning (2/2)

• The difference between the two 
is not as clear-cut
• can they switch roles?

• Antagonisms:
• accurate information vs. 

interpretability

• interpetability (reliability) vs.                      
black box prediction

[2] L. Breiman, 2001

[4] C. Rudin, 2019

[3] Tal Yarkoni, Jacob Westfall, 2017



Survival analysis

• An approach to analyzing the  duration of time until an event occurs
• events: death, organ failure, system failure, customer loss, job retention, ...
• domains: medicine, engineering (reliability), social sciences, ...

• Specifics of survival analysis
• censorship: time-to-event variable is not fully known
• analysis via the survival and hazard functions

• Most commonly used: 
• Kaplan-Meier survival function estimator (nonparametric)
• Cox proportional hazards model (semiparametric; linear regression for survival)



Survival and hazard functions Cox PH model

Accelerated failure time modelKaplan-Meier survival estimator

*Hidden/Extra



Survival prediction (1/2)

• machine-learning (ML) based approach
• focus on prediction over interpretation

• designed to generalize on unseen data
• regularization techniques to tackle overfitting
• crossvalidation for model selection and evaluation

• evaluated using the concordance index
• the ratio of correctly-ordered pairs to comparable pairs:

• often treated as a classification problem



Survival turned to classification

*Hidden/Extra



Survival prediction (2/2)

• CoxNet (regularized Cox PH model)
• gradient boosting methods
• XGBoost
• neural nets (e.g., DeepSurv)

• random survival forests 
• survival support vector machines (SSVMs)

• others (variational clustering, MCMC, ...)

Cox
likelihood
(c-index)

Cox, AFT
(diff. f’s)



*Hidden/Extra



Survival data in liver transplantation

• Orthotopic liver transplantation (OLT) – surgical procedure where 
diseased liver is replaced with a healthy liver from a live/cadaveric 
donor 

• Vital surgical indication; various etiologies

• Survival data: 
• recipent data
• donor data/graft data

• Applications:
• imaging assessment 
• waitlist dropout assessment
• survival analysis – risk factor analysis
• donor-recipient matching/donor allocation policies
• prognostic models - clinical decision making tool



Machine-Learning-Assisted Donor-Recipient Matching 
for Orthotopic Liver Transplantation 

• 656 patients who underwent OLT 
from Mar 2013 – Dec 2018 at 
University Hospital Merkur, Zagreb

• 24 donor and recipient variables

• CoxNet, Random Survival Forest, 
gradient boosted trees, Survival 
Support Vector Machines



Use of ML models for identification of predictors of 
survival and tumour reccurence in patients undergoing 

LT for hepatocellular carcinoma

• 170 patients who underwent OLT 
from Mar 2013 – Dec 2018 at 
University Hospital Merkur, Zagreb

• 34 donor and recipient and tumour 
specific parameters 

• Kaplan Meier:recipient, graft, HCC 
reccurence

• Cox proportional hazards, CoxNET, 
RSF, SSVM, survival gradient boosting 

RECIPIENT GRAFT HCC RECCURENCE



• Statistics can handle inference
• what about prediction?

• (Regularized) Cox is often quite good
• and it’s interepretable!
• what when it is significantly worse?

• ML in medicine
• ML outperforms statistical models
• but: lack of reliability
• how to move forwards?

Our experience in terms of statistics and ML



Conclusion

• Statistical models makes inference about a population
• ML models extract generalizable patterns more efficiently
• Not clear:

• are accurate predictions compatible with interpretability?
• can explanations of ML models sometimes be more informative than statistical 

interpretation? 

• Adapt to the problem and the data:
• an interdisciplinary approach

• In the case of liver transplantation:
• we use statistical models for inference about our population
• we use ML to get accurate predictions of survival (donor allocation)
• plenty of work to do in producing both accurate and reliable models



[5] Noam Chomsky et al., 2023 [6] John Jumper et al., 2021
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