Pregled bibliografske jedinice broj: 1280905
Comparing Different Machine Learning Options to Map Bark Beetle Infestations in Croatia
Comparing Different Machine Learning Options to Map Bark Beetle Infestations in Croatia // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences / Minghini, M ; Ciolli, M ; Neziri, G. (ur.).
Prizren: Copernicus Publications, 2023. str. 83-88 doi:10.5194/isprs-archives-XLVIII-4-W7-2023-83-2023 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1280905 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Comparing Different Machine Learning Options to Map
Bark Beetle Infestations in Croatia
Autori
Kranjčić, Nikola ; Cetl, Vlado ; Matijević, Hrvoje ; Markovinović, Danko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
/ Minghini, M ; Ciolli, M ; Neziri, G. - Prizren : Copernicus Publications, 2023, 83-88
Skup
FOSS4G Conference 2023
Mjesto i datum
Prizren, Kosovo, 28.06.2023. - 30.06.2023
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
supervised classification, machine learning options, QGIS, SAGA GIS, Copernicus data
Sažetak
This paper presents different approaches to map bark beetle infested forests in Croatia. Bark beetle infestation presents threat to forest ecosystems. Due to large unapproachable area, it also presents difficulties in mapping infested areas. This paper analyses available machine learning options in open-source software QGIS and SAGA GIS. All options are performed on Copernicus data, Sentinel 2 satellite imagery. Machine learning and classification options are maximum likelihood classifier, minimum distance, artificial neural network, decision tree, K Nearest Neighbor, random forest, support vector machine, spectral angle mapper and Normal Bayes. Kappa values respectively are: 0.71 ; 0.72 ; 0.81 ; 0.68 ; 0.69 ; 0.75 ; 0.26 ; 0.60 ; 0.41 which shows highest classification accuracy for artificial neural networks method and lowest for support vector machine accuracy.
Izvorni jezik
Engleski
Znanstvena područja
Geodezija, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti
Napomena
Indeksirano u: DOAJ, E/I Compendex
POVEZANOST RADA
Projekti:
--UNIN-TEH-23-1-11 - Digitalni blizanci i pametni gradovi (Cetl, Vlado) ( CroRIS)
Ustanove:
Sveučilište Sjever, Koprivnica
Profili:
Hrvoje Matijević (autor)
Danko Markovinović (autor)
Vlado Cetl (autor)
Nikola Kranjčić (autor)