Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1276948

Synthesizing credit data using autoencoders and generative adversarial networks


Oreski, Goran
Synthesizing credit data using autoencoders and generative adversarial networks // Knowledge-based systems, 274 (2023), 110646, 12 doi:10.1016/j.knosys.2023.110646 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1276948 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Synthesizing credit data using autoencoders and generative adversarial networks

Autori
Oreski, Goran

Izvornik
Knowledge-based systems (0950-7051) 274 (2023); 110646, 12

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Autoencoders ; Generative Adversarial Networks ; Tabular data ; Credit risk data ;

Sažetak
Data quality is an essential element necessary for the development of a successful machine-learning project. One of the biggest challenges in various real-world application domains is class imbalance. This paper proposes a new framework for oversampling credit data by combining two deep learning techniques: autoencoders and generative adversarial networks. A trivial autoencoder (TAE) is used to change data representation, and modied generative adversarial networks (GAN) are used to create new instances from random noise. The experiment on three dierent datasets demonstrates that the same classier achieves a better area under the receiver operating characteristic curve (AUC) on datasets augmented by the proposed framework compared to datasets oversampled by other techniques. Additionally, the results show that datasets balanced by the new framework inuence the classier to change the prediction error types, signicantly reducing false negatives ; more expensive misclassication case in the imbalance learning. The improvements are signicant, and considering the change in error distribution, the proposed technique is an excellent complement to existing oversampling techniques.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Sveučilište Jurja Dobrile u Puli

Profili:

Avatar Url Goran Oreški (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Oreski, Goran
Synthesizing credit data using autoencoders and generative adversarial networks // Knowledge-based systems, 274 (2023), 110646, 12 doi:10.1016/j.knosys.2023.110646 (međunarodna recenzija, članak, znanstveni)
Oreski, G. (2023) Synthesizing credit data using autoencoders and generative adversarial networks. Knowledge-based systems, 274, 110646, 12 doi:10.1016/j.knosys.2023.110646.
@article{article, author = {Oreski, Goran}, year = {2023}, pages = {12}, DOI = {10.1016/j.knosys.2023.110646}, chapter = {110646}, keywords = {Autoencoders, Generative Adversarial Networks, Tabular data, Credit risk data, }, journal = {Knowledge-based systems}, doi = {10.1016/j.knosys.2023.110646}, volume = {274}, issn = {0950-7051}, title = {Synthesizing credit data using autoencoders and generative adversarial networks}, keyword = {Autoencoders, Generative Adversarial Networks, Tabular data, Credit risk data, }, chapternumber = {110646} }
@article{article, author = {Oreski, Goran}, year = {2023}, pages = {12}, DOI = {10.1016/j.knosys.2023.110646}, chapter = {110646}, keywords = {Autoencoders, Generative Adversarial Networks, Tabular data, Credit risk data, }, journal = {Knowledge-based systems}, doi = {10.1016/j.knosys.2023.110646}, volume = {274}, issn = {0950-7051}, title = {Synthesizing credit data using autoencoders and generative adversarial networks}, keyword = {Autoencoders, Generative Adversarial Networks, Tabular data, Credit risk data, }, chapternumber = {110646} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font