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Abstract: This paper focuses on image and video content analysis of handball scenes and applying
deep learning methods for detecting and tracking the players and recognizing their activities. Hand-
ball is a team sport of two teams played indoors with the ball with well-defined goals and rules. The
game is dynamic, with fourteen players moving quickly throughout the field in different directions,
changing positions and roles from defensive to offensive, and performing different techniques and
actions. Such dynamic team sports present challenging and demanding scenarios for both the object
detector and the tracking algorithms and other computer vision tasks, such as action recognition and
localization, with much room for improvement of existing algorithms. The aim of the paper is to
explore the computer vision-based solutions for recognizing player actions that can be applied in
unconstrained handball scenes with no additional sensors and with modest requirements, allowing a
broader adoption of computer vision applications in both professional and amateur settings. This
paper presents semi-manual creation of custom handball action dataset based on automatic player
detection and tracking, and models for handball action recognition and localization using Inflated
3D Networks (I3D). For the task of player and ball detection, different configurations of You Only
Look Once (YOLO) and Mask Region-Based Convolutional Neural Network (Mask R-CNN) models
fine-tuned on custom handball datasets are compared to original YOLOv7 model to select the best
detector that will be used for tracking-by-detection algorithms. For the player tracking, DeepSORT
and Bag of tricks for SORT (BoT SORT) algorithms with Mask R-CNN and YOLO detectors were
tested and compared. For the task of action recognition, I3D multi-class model and ensemble of
binary I3D models are trained with different input frame lengths and frame selection strategies, and
the best solution is proposed for handball action recognition. The obtained action recognition models
perform well on the test set with nine handball action classes, with average F1 measures of 0.69
and 0.75 for ensemble and multi-class classifiers, respectively. They can be used to index handball
videos to facilitate retrieval automatically. Finally, some open issues, challenges in applying deep
learning methods in such a dynamic sports environment, and direction for future development will
be discussed.

Keywords: sports; object detector; object tracking; action recognition; video analysis; YOLO; Mask
R-CNN; DeepSORT; BoT SORT; I3D

1. Introduction

The sports domain offers many opportunities to apply computer vision (CV) to help
athletes, coaches, and teams reach their goals by enabling more efficient and detailed
analysis and tracking of performance, or for the broadcasters to improve the experience
for the viewers—however, the fast pace, complex dynamics, and interactions in many
sports challenges implementing CV solutions. Additionally, achieving the high reliability
required in commercial applications often leads to expensive solutions involving many
specialized high-speed cameras, sensors, and support staff that are sustainable only at the
top competitive level of the most popular sports, such as football, baseball, or basketball.
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Thus, it is of great research interest to develop more advanced and robust CV-based
solutions with fewer technical constraints and requirements that would allow a much
broader adoption of CV applications in both professional and amateur sports.

In the research, there is a great focus on sports, such as basketball, soccer, and volley-
ball. For example, in [1], the authors applied real-time detection with the second version
of You Only Look Once (YOLO) [2] algorithm to detect players, then the Simple Real
time Tracker (SORT) algorithm [3] to track them, and finally, an Long short-term memory
(LSTM) for action recognition on basketball videos from the National Collegiate Athletic
Association (NCAA) Basketball Dataset [4]. In [5], the author created a custom dataset with
6 basketball actions in 37 annotated videos for pose-based action recognition involving
multiple players. The author combined pose estimation with SORT tracking to obtain key
point vectors, then used them to classify the actions using Multilayer Perceptron (MLP),
LSTM, and Bidirectional Long Short-Term Memory (BiLSTM) networks. To summarize
long soccer videos, the authors [6] pick relevant segments to include by temporally local-
izing five actions of interest using an LSTM-based network on top of a 3D Convolutional
Neural Network (3D-CNN) feature extractor based on ResNet trained on a custom soccer
dataset. Finally, in [7], the authors focused on a fine-grained action recognition problem
of distinguishing between successful or failed ball-stopping action in soccer training. The
authors first used a YoloV3-based model for player and ball detection. If only one player
and the ball exist in the frame, they used the detected bounding boxes to create trajectories
that were then classified using an LSTM-based network. The networks were trained on a
custom dataset of 2543 annotated ball-stopping action videos from training sessions.

Researchers have recently studied group activity in team sports and individual actions.
For example, in [8], the authors used a two-stream 3D-CNN model with motion patterns
and visual key information to recognize group activities in basketball and predict whether
there will be a score. In [9], the authors designed an LSTM model for recognizing individual
action dynamics to steer another LSTM model to recognize group activities in volleyball.
They evaluated their model on existing and custom volleyball datasets with YouTube
videos. In [10], the authors compare and evaluate the performance of handball players
while performing “Throw” action. They used dynamic time wrapping to compare skeleton
data gathered from Red Green Blue-Depth (RGB-D) images, focusing on the central angles
responsible for the action. In [11], the authors considered recognizing three group activities
in soccer with different self-attention models, such as the transformer and vision-based
models with Inflated 3D Networks( I3D) as a backbone. In [12], the focus is on recognition
of six team activities, such as basic defense or offense fast break from a top-down view
using new group activity features computed from player positions.

There are many publicly available datasets that contain data specific to the sports
domain. Some examples of publicly available datasets are the UCF Sports Action Data
Set [13], Olympic Sports Dataset [14], the Sports-1M dataset [15], and the Sports Videos
in The Wild (SVW) dataset [16]. However, although there are publicly available datasets
for the sports domain, they often do not meet the specific requirements for which a model
needs to be built, thus, many authors create their own custom datasets that are tailored to
model building for their specific task, despite the effort and cost involved in data collection,
labeling and preparation. Two datasets that focus on fine-grained actions are the FineGym
dataset [17] and the MultiSport dataset [18].

A more extensive overview of related work in action recognition in sports is given
in [19]. In the review, it was noted that there is a significant increase in interest in actions
recognition in ball sports, but also that all sports, even Olympic ones, are not equally
represented in the research. One of the Olympic sports that is particularly popular in
Europe and is underrepresented in research is handball.

Therefore, the subject of our research in this paper is focused on the application of deep
learning methods and building computer vision models for handball. The goal of this work
is to train models for automatic player detection and player tracking, and recognition of the
actions they perform and their temporal localization on handball videos recorded with only
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one camera, from a position accessible to spectators and coaches. The key issue is to make
models that can be easily used by everyone, especially recreationists, young athletes, and
athletes in small clubs, and everyone else interested in sports without expensive equipment
and cameras to track their performance and improve the usability of recorded videos in the
case of handball.

This work is a continuation of our comprehensive research project in which we dealt
with player and ball detection [20], tracking the player in video [21], and determining the
key player in the field [22]. We used player detection and tracking models to create an
action recognition dataset in a way that shortens the time-consuming and tedious work of
tagging video sequences. The paper briefly describes this procedure for the semi-manual
creation of a dataset for training an action recognition model based on expert evaluation of
the results obtained by automatic player detection and tracking. The paper also presents
the new UNIRI-HBD_v2 dataset that was created in this way and was used to train the
models for handball actions recognition.

The contributions of this paper include the analysis of two different strategies for
training the action recognition models, namely, a comparison of a single multi-class model
capable of assigning one action label to each sequence and of an ensemble of binary
classifiers where each classifier can assign or not assign its corresponding label, resulting in
multi-label classification.

Handball actions vary widely in duration, from 10 to 80 frames, and have important
segments in different parts of the video sequence. Since action recognition models require
a fixed number of input frames, the influence of the length of the input sequence was
separately analyzed on the performance of the classification of isolated actions and on the
temporal localization of actions in unconstrained videos. In the case of temporal action
localization, the considered time window may include only a part of the action or contain
parts of different actions. All experiments were conducted on a custom dataset of annotated
handball videos [23].

The next section presents materials and methods used. The first subsection presents
the most important methods used for semi-manual action dataset creation to accomplish the
task of action recognition in handball, including object detection and person tracking. The
second subsection explains action recognition and temporal localization tasks, followed by a
description of the algorithms used in the experiments. The third section presents the action
recognition and temporal localization experiments and fourth obtained results, followed
by a discussion. Finally, the last section gives a conclusion with future research directions.

2. Materials and Methods
2.1. Semi-Manual Action Dataset Creation

To train the model for different computer vision tasks on handball scenes, it was
necessary to create a custom dataset since there was no suitable dataset that could be used
to train the model in the handball domain. Given that the creation of a set for supervised
training is a long-term and expensive process, the goal was to apply an approach that
facilitates and speeds up the creation of a set.

The challenge in video tagging of handball scenes recorded during training and
matches was that there are multiple players on the field at the same time performing
different actions, moving in different directions, at different distances from the camera, and
dynamically entering and exiting the camera’s field of view. The idea was to tag actions
in videos using a person detector that automatically detects special location of players
and tracking methods that follow their movements to help automatically recognize their
actions. The annotation of the data set includes also manual temporal labeling where time
sequences corresponding to a handball action are marked. As different actions can take
place at the same time, multiple actions can be marked at some point in time, where there
is no clear connection between the annotation and the spatial location where the action
occurs. Figure 1 shows the basic steps of semi-manual creation of an image dataset for
recognition of handball actions in scenes where multiple players are present.
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Figure 1. The semi-manual semi-supervised action dataset creation: the annotation of the data
set includes manual temporal labeling followed by automatic spatial localization of players by
means of automatic player detection and tracking, and finally, manual verification of generated
action proposals.

Player detection and tracking isolate ongoing candidate actions from a video. The
actions are performed by individual players and lastly, for a sequence of consecutive frames.
At the same time, the basic handball actions, such as “Shot”, “Jump Shot”, “Running”,
“Dribbling”, etc., were temporally annotated using a video annotation tool. The next step
merges the tracked player with the action taking place in that time and involves manual
validation of the matches to build the final ground truth data for action recognition models.
Expert-assessed matching of automatically selected video clips with the performed action
is crucial at this stage because the athlete tracking model still does not have satisfactory
accuracy, and the goal is to populate the dataset only with accurate data that will be useful
for training the model.

The resulting UNIRI-HBD_v2 dataset contains 4451 sequences in 9 action classes and
a “Background” class with class distribution and average length, as shown in Figure 2.
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The described process of dataset creation is relatively complex, but it is important
that once defined, the player detection and tracking model can be used multiple times to
automatically supplement the dataset of handball actions.
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2.1.1. Player and Ball Detection

To recognize player actions and activities later, a handball player should be detected
first, i.e., the player must be located on an image or consecutive video frame. This is a
typical object detection task, where the goal is to locate all objects of a certain class (in this
case, a handball player) in the image and return the spatial location and spatial extents of
the detected objects, usually represented with rectangular regions.

During the preparation of the handball dataset, different configurations of Mask
R-CNN [24], YOLOv3 [25], and YOLOv7 [26] models were considered for the detection
of handball players and sports balls. YOLOv3 was tested in its default configuration
with the pre-trained model and in custom Yolov3-PB configuration with increased input
image size and fine-tuned on our UNIRI_HBD dataset of 855 images containing different
sports balls and from different sources [20]. Mask R-CNN was tested in its Detectron2
implementation [27], using the model pre-trained on the COCO dataset, with the ResNeXt-
101-32 × 8d and FPN backbone with standard convolutional and fully connected heads
for box prediction. Here, we also present that publicly available models, such as YOLOv7
trained on large datasets, such as COCO [28], for detection of broad and general objects,
can be used relatively successfully for player detection.

2.1.2. Player Tracking

Tracking handball players is a multi-object tracking problem because there can be
14 players simultaneously if a handball competition is analyzed, and even more in a training
session. With an object detector, all the players’ locations would be known in the ideal
case. However, there is still no correspondence between the detected player bounding
boxes and the players’ identities. This problem can be solved using a tracking algorithm, or
tracking-by-detection algorithm, that should assign a unique ID to each player that appears
in a frame and maintains that ID while that player is in the scene. To accomplish that,
a tracker can use the information obtained by the object detector, such as the dimensions
and the location of the bounding boxes, along with their relative positions considering
previous frames with the assumption that the objects should be near their last position or
move according to a known movement model, e.g., in a linear fashion. Trackers may also
use visual features extracted from within the bounding boxes if the overall appearance of
the tracked object maintains some constant features that can be tracked even with changing
pose or orientation. Cost functions are defined using both sources of information that serve
as a quantitative measure of how different a bounding box is from the presumed position
or appearance of the tracked object in the next frame. The Hungarian algorithm is used to
find the globally optimal assignment of identification tracks to the bounding boxes of the
players obtained by the object detector so that the cost function for the assignment reaches
the global minimum.

Tracking of players can be very demanding because players move quickly through the
field and often change directions, challenging the assumption that the detected bounding
box of a player in the next frame will be near or nearest to the last one. In addition, especially
in the competition setting, the players wear similar clothes, often in colors that also appear
in the “Background” (e.g., blue shirts on the blue court), further complicating tracking
of appearance features that must be specifically sensitive to player identity unrelated
to clothes.

In this work, we expand on the work of [29], where DeepSORT [30] was used for player
tracking in conjunction with the YoloV3 [25] player detector, and additionally considered
BoT-SORT [31] for tracking and Mask-RCNN and YoloV7 player detection. Deep SORT
and BoT-SORT are tracking-by-detection algorithms that rely on external object detectors
to detect the objects (players) on consecutive frames and use the Hungarian algorithm to
solve the global assignment problem to join the player on the current frame to his tracklet
from the previous frames. DeepSORT uses an appearance model to keep an inventory
of visual features from previously assigned player bounding boxes to IDs for their re-
identification. The visual features are obtained using a residual neural network consisting



J. Imaging 2023, 9, 80 6 of 18

of two convolutional layers and six residual blocks, pretrained on a person re-identification
dataset with a million images [30].

BoT-SORT is a recent algorithm that achieved state-of-the-art results on multi-object
tracking challenge MOT17 and MOT20 datasets [31]. It uses an appearance model based
on the FastReID library [32] with features extracted using a ResNeSt50 [33] network,
and Kalman filter for motion modeling. In addition, it attempts to compensate for camera
motion using the global motion compensation from the OpenCV Video Stabilization module
with affine transformation.

The trackers were tested on two sequences of handball practice from UNIRI-HBD
dataset, with lengths of 48 s and 5 min 30 s, both at 60 frames per second, respectively.
In both sequences, the camera is stationary, but in the first sequence, it zooms in at some
point. The ground truth sequences were generated by detecting the players using YoloV3,
“Running” the tracking using the Deep-SORT algorithm, and manually correcting the
track assignments.

Since the accuracy of the object detector greatly influences the tracking accuracy,
in testing, both the Deep-SORT and BoT-SORT trackers were fed the same bounding
boxes generated with the Mask R-CNN detector. Since here we are mostly interested in
the tracker’s abilities to assign the player detection to correct track IDs correctly. In re-
identification performance, only measures that deal with track assignment are evaluated. In
contrast, the commonly used Multiple Object Tracking (MOT) evaluation measures, such as
Multiple Object Tracking Accuracy (MOTA) or Multiple Object Tracking Precision (MOTP)
concerned with bounding box correspondences and object detection performance are
ignored. Namely, the number of identity (ID) switches [34] and identification F1 (IDF1) [35]
are considered.

An identity switch means that a ground truth target was assigned to a track j and
the last known assignment was to a different track k 6= j. The IDF1 focuses on how long
a target is correctly identified regardless of the number of mismatches and expresses the
percentage of correctly identified detections over the average number of ground truths and
computed detections.

Once the players are tracked, actions annotated in time can be combined with the
tracked players in a video.

2.1.3. Concatenating Frames and Validation of Action Sequences

The final step involves connecting the action labels marked on a timeline with the
detected player tracks. Timeline labels only contain temporal dimension and action identity
but lack correspondence to the spatial location of the players performing the marked action.
On the other hand, the detected player tracks locate a player in space and time in the video
but lack information about the actions performed. The goal is thus to map the action labels
and time ranges to corresponding player tracks, or rather, specific time ranges within a
player tracking. However, since player tracking and detection are imperfect, a single-player
track that should contain all appearances of that player in the video is, in fact, fragmented,
so many short tracks with different IDs represent one player. Furthermore, due to missing
player detections or wrong bounding boxes, the tracks may be interrupted where the player
is still present on the scene or contain only part of the player that is visible in the scene.
For these reasons, although an action is marked in the timeline, it is not guaranteed that a
corresponding track is detected that contains the whole sequence of a player performing
that action.

For each time segment where an action occurs, there are normally as many tracks
as players in the field, and usually more due to track fragmentation (player detection
is more reliable than tracking, so usually, there is at least a partial track for all players).
The detected player tracks and corresponding boxes are treated as a new video sequence,
where each frame is extracted from the bounding box in the original video (Figure 3). Since
the dimensions of the detected bounding box may change from frame to frame to keep
the frame size constant in the resulting video without resizing or changing the aspect
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ratio, the dimensions of the largest bounding box in the whole sequence are used for the
whole sequence.
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The tracks are first filtered to facilitate mapping between the temporal annotations and
the detected player tracks so that only the tracks that likely contain an action are presented
to the annotators. This is completed by ranking the tracks according to the optical flow
(OF) activity measure proposed in [22]. The optical flow estimated from consecutive video
frames describes the speed and direction of image patches within players bounding boxes
Bb, which measures player activity [22]. The optical flow estimate is a vector field V of
velocities. At each point (x, y), the vector magnitude represents the speed, and its angle
represents the direction of movement. The activity measure (AOF

b ) of a player with its
bounding box (Bb) in a single frame is calculated as the maximum optical flow magnitude
Vx,y within the area Pb of the bounding box:

AOF
b = max

Bb

∣∣Vx,y
∣∣ : x, y within Bb. (1)

The activity measures for each player in individual frames are aggregated into the
track scores by counting the number of times a track has the highest activity score. Finally,
the top two sequences (Figure 3) were presented to the annotator according to the activity
score for each temporally annotated action, to either select the sequence corresponding
to the proposed action or to mark the sequence with a “Background” class if they do not
contain any of the target actions or are poorly tracked.

The annotated actions are used as the ground truth in further work to create action
recognition models for handball footage.

2.2. Action Recognition and Spatiotemporal Localization Models

A human action, according to [19], is defined as a predefined set of physical movements
that a person performs in a certain time to complete an assigned task. In these physical
movements, an object can sometimes be included, or more people can interact with each
other to complete a more complex task.

The goal of action recognition is to assign a class label corresponding to an action
(e.g., “Throw” or jump) to a video sequence. The usual assumption is that for each frame,
only one pertinent label exists, i.e., only one action at a time. The recognition may be on a
frame-by-frame basis, or on the level of the whole sequence, which is then also assumed to
contain a single action. In the case of the unconstrained video of sports events, including
handball, a more demanding task of spatiotemporal action localization is usually desired.
The idea is to recognize which handball actions are performed, in which period (sequence
of frames), and where the handball players performing individual actions or multiple
players performing an activity are in the scene. A common approach for spatiotemporal
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localization, also used in this paper, is to reduce the problem to a series of action recognition
tasks by generating candidate action sequences that are extracted spatially and temporally
from the unconstrained video and applying the action recognition model to assign the
appropriate action label. Since the generated candidate sequence does not always really
show an action, the action recognition model should be able to handle that case. For that
reason, in this work, we train the models on a “Background” action class which denotes a
sequence that does not show a handball action or is defective due to poor player detection
or tracking.

Considering the complexity and duration of certain actions and activities, some can be
detected using just one frame, but for more complex actions, a sequence of frames is needed
for reliable recognition, such as a “Jump Shot” consisting of several physical movements,
such as “Dribbling”, jumping vertically, and simultaneously throwing a ball. For that
reason, models that take the time dimension into consideration are applied to the task of
handball action recognition.

In the following experiments, a group of models based on the Inflated 3D Network
(I3D) architecture [36] were used, which was originally proposed specifically for the action
recognition tasks. The I3D architecture is based on 3D convolutional neural networks that
are created by “inflating” the filter and pooling layers dimensions of a 2D convolutional
network (Inception-v1) into the third (temporal) dimension. The initial parameters can
also be inherited from the source network by replicating the weights of the 2D filters
along the time dimension. Two such inflated Inception-v1 networks are used in tandem,
one to process the RGB stream consisting of unmodified video frames, and the other for
processing a sequence of optical flow frames that are pre-computed from the input video
(Figure 4). Both networks are independently trained on the Kinetics dataset of 400 action
categories, starting from the ImageNet pretrained Inception-v1 weights. The predictions of
both networks are averaged to obtain the final decision. The authors report good results
with I3D architecture when fine-tuning the models pre-trained on the Kinetics dataset to fit
other, smaller action recognition datasets.
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In this work, the final two layers of the I3D network streams were replaced to fit the
number of classes in our dataset. The models were then trained on our dataset, starting
from the Kinetics pre-trained models, with all the original layers frozen and only changing
the parameters of the last two layers.
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The size of both RGB and optical flow frames was 224× 224 pixels (px). In the original
paper, the RGB input was prepared by first proportionally scaling the input video so that
the smaller side is 256 pixels, then taking a random 224 × 224 px crop. However, in our
case, since the input image is already a tight crop around a player, square cropping from
a typically tall input would cut off too much of the image, such as the player’s hands,
and thus lose important information about the performed action, so we opted to simply
rescale the input frame to 224 × 224 px. For the optical flow stream input, the dense
optical flow was first computed on the input video using Farneback’s algorithm [37], then
a 224 × 224 px center crop was taken.

3. Action Recognition and Localization Experiments
3.1. Action Recognition Experiments

In the first experiment, I3D models were trained for recognition of 10 action classes
(9 handball actions and “Background” classes) on UNIRI_HBD_v2 dataset.

Since the ground truth actions in the dataset contain action clips of varying lengths,
during training they had to be somehow reduced or expanded to the input length of the
model. In previous research [38], we investigated how different lengths of input sequences
and different strategies for reduction of the number of input frames influence the action
recognition accuracy and found that for some models the results improve with increasing
number of input frames.

Therefore, the I3D models were trained on four different input sequence lengths,
ranging from 10 to 60 frames, and using two different strategies to handle the varying
sequence lengths, namely, cropping and decimation. In the cropping case, the set number
of frames was extracted from the beginning part of the sequence. In the decimation case,
an input sequence was reduced to the desired length by dropping frames throughout the
sequence, so that the network “sees” the whole action, but at a reduced frame rate. In both
cases, if the original sequence contained fewer frames than needed, the necessary number
of frames was copied and inserted between existing frames to extend the sequence.

The videos were randomly divided into training and testing sets in a ratio of 80:20
for each class. The I3D models were trained using the Adam optimizer with a learning
rate of 0.00005, up to 30 epochs with a batch size of 10 on an NVIDIA RTX2080 GPU. To
augment the dataset, during training, in some sequences, all frames were randomly flipped
left-to-right so that for example a “Shot” towards the left becomes a “Shot” towards the
right side.

In the next experiment, a binary classification strategy was applied, so that for each
class, a separate binary classifier was trained that decides whether a sequence should be
labeled with that class or not. Each model was an I3D model as above, but with only two
output classes.

All binary classifiers were trained on the same training set as above; however, the class
labels were modified, so that if, e.g., a “Jump Shot” classifier was being trained, all “Jump
Shot” examples were labeled as true examples, and all examples of other classes were
labeled as false. In this case, there was no need for a separate classifier for the “Background”
class, which was represented by the negative output of each classifier. The input sequence
length was 60 frames for all classes, taken from the beginning of the original sequence,
except for “Catch” and “Throw” classes, for which the input length was 20 frames.

Each model was applied to the test set and evaluated independently for its ability to
classify the sequence into the correct class in terms of precision, recall, and F1 score. In
this way, a sequence from the test set could be classified into zero, one, or more action
classes, as it is possible that more classifiers assign their class label to the example. In
the case of complex actions, such as “Dribbling” or “Passing”, this could be desirable
(e.g., a sequence can simultaneously belong to the class “Catch” and be a part of class
“Dribbling”). Additionally, since the input sequence length was adjusted according to
individual classes, so it is shorter for “Catch” and “Throw” than for “Passing” classes, these
classes can be handled better than in the multi-class model.



J. Imaging 2023, 9, 80 10 of 18

3.2. Spatiotemporal Action Localization Experiment

The most demanding task is spatiotemporal action localization, where the goal is
to detect where and when actions occur in an untrimmed video and output a series of
bounding box detections with the associated class labels.

For this task, we generate the candidate action sequences using the same object Mask
R-CNN detector and Deep SORT tracker as in dataset preparation. The candidate sequences
are then split into parts of equal duration in a sliding-window fashion (Figure 5) to be
processed with an action recognition model. The window length N depends on the input
length of the action recognition model and on the frame selection strategy. For the models
trained using the cropping strategy, N is equal to the input length. For the decimation
strategy, N can be larger than the input length and set closer to the average length of
training sequences. In that case, true input to the network is again obtained by skipping
frames (decimation). Finally, an action classification model is applied to each sequence
to output either one of the action classes, or no action “Background” label. The same I3D
models described in Section 2.1.3 are used here for this purpose.
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Figure 5. A sliding window of the candidate sequences with window length N that depends on the
input length of the action recognition model and on the frame selection strategy.

The evaluation was performed on 6 video clips from different camera angles, of a total
duration of 5 min 31 s, that were not used in training the models.

The evaluation was completed for each class separately, then the obtained results
were averaged. A classified sequence was considered as true positive for a certain class if
the intersection over union (IoU) overlapped between the ground truth sequence and the
sequence classified into that class was at least 10% in the temporal domain. The required
percentage was quite low because ground truth annotations may be much longer or shorter
than the window length, e.g., a ground truth annotation of a “Throw” action in 10 frames
and a window length of 60 would, in the best case, achieve an IoU of 16%. If the class is
correctly assigned, but the IoU score is less than 10%, the classification is counted as a false
negative. If a wrong class is assigned to a sequence, the classification is counted as a false
positive for that class.

4. Results and Discussion
4.1. Object Detection Results

On the UNIRI-HBD test dataset, we compared the player detection results of the
models we tuned for player and ball detection on our dataset (Yolov3, Yolov3-PB, and Mask
R-CNN) with today’s improved versions of those models (Yolov7) to compare performances
and to evaluate whether we need to update the data in the dataset we use to train the
athlete detection model. The models were tested on a subset of 27 manually labeled images
extracted from the videos of handball practice. The results of object detection in terms of
average precision are shown in Table 1.
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Table 1. Object detection results on UNIRI-HBD dataset.

Model Input Size Ball AP Person AP mAP

Yolov3 608 × 608 13.53 66.13 39.83
Yolov3-PB 1024 × 1024 35.44 63.77 49.61

Mask R-CNN 1333 × 800 8.3 87.45 47.87
Yolov7 (640) 640 × 640 6.9 85.16 46.03
Yolov7-e6e 1280 × 1280 23.07 90.88 56.97

For player detection, the best results were achieved with the state-of-the-art Yolov7-e6e
model, closely followed by the older Mask R-CNN model. The improvement between
Mask R-CNN and Yolov7-e6e is much larger for the ball class, by nearly 15%, than for
the person class, which was subjectively very good already with Mask R-CNN. Still, the
ball detection performance needs to be more reliable for tracking the ball and should be
still improved.

The best results for ball detection were achieved with the custom Yolov3-PB model,
with an average precision of 35.44, which shows that training on custom data greatly
improves the results over the basic model; however, it is still insufficient to achieve reliable
ball detection. This is expected as the ball is very small and moves very fast when in the
air, causing motion blur that can alter its appearance or make it virtually disappear in the
“Background” and is often occluded by players. Therefore, the model comparison shows
that it is unlikely that a newer model or just retraining the model on a larger amount of
data will solve the ball detection problem, and it is assumed that more specific model
architectures will be needed.

In the following tracking experiments, the players were detected using the Mask R-
CNN detector, which was available at the time of creating the dataset, and the ball detection
was not used. Since the annotation process is very time-consuming, not all videos were
annotated. In the future, Yolov7-e6e or some other better-performing detector will be used
for player detection in the rest of the videos.

4.2. Tracking Results

On the handball video from UNIRI-HBD test dataset, we compared the player tracking
results achieved with Deep SORT models that were used with a fine-tuned player detectors
(YOLOv3 and Mask R-CNN) with newer tracker BoT-SORT [31] that we used with newer
versions of detectors (YoloV7-e6e). The aim was to evaluate whether new models can better
track the player in complex scenarios and generate video sequences that better correspond
to handball action to be used to train models for handball action recognition.

The reported advantage of BoT-SORT in MOT challenges [31] does not translate to
our handball dataset as Deep SORT achieves slightly better IDF1 measures and produces
fewer spurious tracks than BoT-SORT with either Mask R-CNN or Yolov7 used as player
detectors (Table 2).

Table 2. Player tracking results on UNIRI-HBD dataset.

Measure Tracker (Used Object Detector)

Deep SORT
(Yolov3)

Deep SORT
(Mask R-CNN)

BoT SORT
(Mask R-CNN)

BoT-SORT
(YoloV7-e6e)

Number of ground truth tracks 279
Number of generated tracks 1554 762 1106 5646

ID switches 1483 1385 1806 1694
IDF1 24.70% 24.67% 23.26% 16.91%

Similar with the ball case in object detection, it seems that tracking players in team
sports, such as handball, differ enough from the general object tracking or tracking tuned
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to pedestrians, that a specialized approach is warranted that should utilize the constraints
of the given sport.

An example of parts of different chronological frames where the tracking is performed
can be seen in Figure 6. The player, ID 7, is moving through the field and is successfully
tracked through time.
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Although both algorithms produce tracks that are much more fragmented than the
ground truth, the resulting tracks are, in most cases, still long enough to contain a whole or
most of a handball action.

4.3. Action Recognition Results

Table 3 shows action recognition results for the I3D models in terms of accuracy,
precision, recall and F1 score on the UNIRI-HBD_v2 dataset. Different input length and
frame selection strategies were used. The best action recognition result (F1 78%, precision
80%, recall 77%) was achieved with decimation strategy in the case of 40 frames, while the
second-best result was only slightly worse (F1 77%, precision 79%, recall 76%) with the
cutting strategy and 60 frames.

Table 3. Action recognition results for the I3D models on the UNIRI-HBD_v2 dataset with varying
input length from 10 to 60 frames and decimation and crop frame selection strategies. The best results
are presented in bold.

Model Frame Selection Input Length Accuracy Precision Recall F1
I3D_10D Decimation 10 0.71 0.73 0.71 0.71
I3D_10C Crop 10 0.67 0.68 0.67 0.67
I3D_20D Decimation 20 0.73 0.75 0.72 0.71
I3D_20C Crop 20 0.72 0.73 0.71 0.72
I3D_40D Decimation 40 0.79 0.8 0.77 0.78
I3D_40C Crop 40 0.76 0.78 0.76 0.76
I3D_60D Decimation 60 0.75 0.77 0.75 0.75
I3D_60C Crop 60 0.78 0.79 0.76 0.77

The F1 score of I3D_C models using the cropping strategy improves with an increasing
number of frames from 10 to 60. However, the I3D_D models with the decimation strategy
achieved the best result with 40 frames, slightly better than I3D_C with 60 frames.

In the case of the decimation strategy, 10 and 20 frames had the same result for an F1
score of 71%, while the increase in frames from 40 to 60 frames recorded a drop in the F1
score from 78% to 75%. Changes in precision and recall metric scores behave in a similar
way, with the crop strategy they increase with the increase in the number of frames, and
with the decimation they achieve the best results at 40 frames.

The sequence of 60 frames is around the average duration of video frames considering
all the classes.

To analyze the results in more detail, we used the confusion matrix, which makes
it easy to see whether the classifier routinely confuses two classes. Table 4 presents the
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confusion matrix obtained with the best preforming model I3D_40D, which uses decimation
strategy and 40 input frames.

Table 4. Confusion matrix for the I3D_40D model that uses decimation strategy and 40 input frames.
The values in bold represent the percentage of samples for which the predicted label is true positive
(equal to the ground-truth label).
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Passing 82% 1% 1% 0% 1% 2% 2% 3% 5% 3%
Crossing 13% 79% 3% 2% 0% 2% 2% 0% 0% 0%
Defense 2% 1% 72% 3% 0% 4% 2% 5% 2% 8%

Jump Shot 1% 2% 2% 90% 0% 4% 0% 0% 1% 0%
Shot 1% 0% 1% 11% 56% 6% 1% 3% 18% 1%

Running 3% 0% 1% 1% 0% 90% 2% 2% 1% 2%
Dribbling 7% 0% 5% 0% 0% 9% 64% 7% 6% 4%

Catch 6% 2% 0% 0% 0% 2% 2% 74% 10% 4%
Throw 7% 1% 4% 1% 2% 3% 2% 10% 68% 3%

Background 0% 0% 2% 0% 0% 0% 2% 1% 1% 94%

Looking at the confusion matrix, it is evident that large confusion occurs between
more complex actions that include a common simpler action as its part. For example,
both “Dribbling” and “Crossing” include a simpler throwing action. “Dribbling” is a
complex action that involves “Running” while bouncing the ball off the floor, explaining
the confusion with the “Running”, “Throw” and “Catch” classes. Similarly, “Crossing” is a
complex action that consists of two “Passing” actions with a change of the players’ positions
and a “Shot”, which explains the misclassifications between “Crossing” and “Passing”.
The largest single confusion occurs between “Shot” and “Throw” actions, which are very
similar and differ mostly by intensity and intent, a “Shot” is directed towards the goal
and is usually performed with higher speed and intensity than “Throw” which signifies
any other throwing of the ball, normally towards another player. “Catch” and “Throw”
actions are also similar short interactions with the ball, which include a player raising his
hand/hands to “Throw” or “Catch” the ball.

Considering the results achieved when observing all 10 classes together, the experi-
ments were continued observing only one class at a time, i.e., if a certain action occurred
or not.

In the second experiment, a separate I3D binary classifier was trained for each action
for each sequence. The results of applying the binary classifiers on the test set are shown
in Table 5, along with the results of the best-performing multi-class classifier (I3D_D with
40 input frames).

For all but one of the classes, the multi-class classifier outperformed the ensemble of
binary classifiers in terms of F1 score. The results for the remaining class, “Crossing”, were
rather similar for both models. Relatively problematic is the complex “Passing” action
that is composed of “Catch” and “Throw” actions. The ensemble classifier would have
the advantage over the multi-class classifier in this case since the ensemble classifier is not
forced to choose between the “Passing” class and its parts (“Catch” and “Throw”), such
as the multi-class classifier is. Instead, each binary classifier for a “Catch”, “Throw”, and
“Passing” could assign its label to the “Passing” sequence. In this way, it would be expected
that the ensemble classifier has overall better recall but possibly worse precision than the
multi-class classifier. Surprisingly, the opposite is true here, with the ensemble classifier
having a much lower recall than the multi-class classifier for both “Catch” and “Throw”
classes, and the same recall with lower precision for the “Passing” class.
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Table 5. Action recognition results for ensemble of binary I3D models and multi-class classifier I3D_D
with 40 input frames on UNIRI-HBD_v2 dataset. The best average result achieved by the models on
the test set is shown in bold.

Model: Ensemble of Binary I3D Models I3D_40D (40 Frames)

Action Class Input Frames Precision Recall F1-Score Precision Recall F1-Score

Passing 60 0.66 0.64 0.65 0.76 0.82 0.79
Crossing 60 0.9 0.74 0.81 0.88 0.79 0.74
Defense 60 0.71 0.73 0.72 0.77 0.72 0.74

Jump Shot 60 0.82 0.92 0.87 0.87 0.9 0.89
Shot 60 0.56 0.87 0.68 0.93 0.56 0.70

Running 60 0.75 0.81 0.78 0.78 0.9 0.83
Dribbling 60 0.66 0.5 0.57 0.81 0.64 0.71

Catch 20 0.73 0.53 0.61 0.71 0.74 0.73
Throw 20 0.65 0.49 0.56 0.64 0.68 0.66

Average 0.72 0.69 0.69 0.80 0.77 0.78

Additionally, the ensemble method has a large drawback in that it requires “Running”
10 models on the same example, and so requires at least 10 times the processing time
than the multi-class model, and more if the time to load the models in the GPU memory
is considered.

4.4. Action Localization Results

The averaged results of action localization are shown in Table 6.

Table 6. Action localization results for I3D models with varying number and selection of frame
and ensemble of I3D binary models with crop frame selection strategy. The best results of action
localization are presented in bold.

Model Frame
Selection

Input
Length

Window
Length Precision Recall F1 Measure

Ensemble Crop 60 and 20 60 and 20 0.65 0.483 0.628
I3D_10D Decimation 10 40 0.479 0.599 0.5
I3D_10C Crop 10 10 0.361 0.457 0.367
I3D_20D Decimation 20 40 0.542 0.549 0.527
I3D_20C Crop 20 20 0.502 0.521 0.504
I3D_40D Decimation 40 40 0.679 0.672 0.646
I3D_40C Crop 40 40 0.606 0.69 0.607
I3D_60D Decimation 60 60 0.58 0.581 0.587
I3D_60C Crop 60 60 0.364 0.479 0.627

The I3D_40D model, which achieved the best results in the action recognition task in
terms of all considered metrics, also performed the best regarding the precision and F1
measures for the action localization task. In terms of recall, the I3D_40C performed slightly
better at a cost of lower precision. In most cases, for the same number of input frames, the
decimation models achieve better results in terms of F1 measure than the models using the
crop strategy, with the only exception being the model with 60 input frames.

An example timeline visualization of detections for a model with 10 input frames
and a model with 60 input frames is shown in Figure 7. Ground truth action intervals
are shown with green bars and detected action intervals with blue bars. A single ground
truth action can be represented with multiple discrete detections, because of the sliding
window segmentation that presents the sequence to the action recognition model in chunks
of constant length. The model with fewer input frames (I3D_10C) struggles to detect longer
actions, such as “Passing”, in contrast to the I3D_60D model, which takes a longer input
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sequence. On the other hand, the longer input limits the temporal resolution, making it
difficult to detect short and quickly changing actions.
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The ensemble model surprisingly did not show the best result as in the action recogni-
tion task, even with the advantage of having different input lengths for different actions.

4.5. Discussion

This paper considered a computer vision pipeline for analysis of activities of handball
players in videos, with the final task of spatio-temporal localization of handball actions in
unconstrained video. The pipeline consists of several subtasks, where object detection and
player tracking provide spatially localized proposals for the sub-task of action recognition.
Similar pipelines were considered for sports, such as basketball [1] and volleyball [9]. Each
sub-task was considered in a separate experiment.

In the player detection task, both the Mask R-CNN and Yolov7 models already
achieved good results without fine-tuning on the handball-specific dataset, with AP from
about 85 to 91, depending on the configuration. However, the ball detection task was much
harder, with the best AP result of 35 achieved with the Yolov3 model trained on our dataset.
Training the ball detection on our dataset increased the average precision significantly,
and a similar increase can be expected with newer object detection models, but the results
still need to be satisfactory for real applications in handball analysis. Furthermore, since
the possession of the ball performs a great role in interpreting the game situation, further
specialized models for ball detection that go further than single-frame analysis should
be investigated.
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Generating action proposals relies on player tracking in addition to player detection.
The problem of multiple object tracking, particularly tracking pedestrians, is widely re-
searched [39]. Commonly used techniques use a combination of motion and appearance
models to assist in assigning new detections to existing tracks, or in the re-identification
of players in new frames. While sharing most of the challenges of pedestrian tracking,
such as occlusion, bad lighting, etc., in player detection, fast and unpredictable movement
makes motion prediction less reliable. Simultaneously, appearance-based re-identification
is harder because different players have very similar appearances due to team jerseys. Yet,
the same player can appear very different due to a much wider range of poses in sports
than in pedestrians. The results of player tracking with both tested methods produce usable
results for practical application in action localization; however, there is still a need for
improvement. Future work should consider handball or sports specifics, such as assuming
a maximum number of real identities and using more specific features, such as faces or
jersey numbers for re-identification.

I3D models with different strategies (multi-class and ensemble of binary classifiers)
have been investigated for the action recognition task. The best results were achieved
by the multi-class model with an F1 measure of 0.78 averaged over all classes, which
outperformed the ensemble of I3D models, each trained as a binary classifier for one action
class with the average F1 measure of 0.69. In a future study, removing the complex actions,
such as “Passing” and inferring them from their parts (“Throw” and “Catch”), will be
investigated instead of direct classification of the complex actions, as these proved to be the
source of most classifier confusion.

In many applications, such as video retrieval or statistics generation, it would be
useful to find all actions by a certain player, which needs to be addressed in this study.
However, this problem is linked to player tracking and should be considered in future
work. In addition to classification accuracy, future work should focus on increasing the
speed of classification, as the processing pipeline is still quite complex and computationally
demanding. Approaching real-time processing would open new application possibilities in
real-time statistics or highlight generation.

5. Conclusions

Several experiments with the application of deep learning methods for video content
analysis of handball scenes were presented in this paper. Player detection, tracking, and ac-
tion recognition were considered incremental steps toward the spatio-temporal localization
of actions in the video, but different experiments were shown for each task.

For the action recognition task, I3D models are trained on a subset of input lengths.
Next, the models are evaluated on previously extracted individual action sequences
for action recognition and finally on the unconstrained video of handball training for
action localization.

The set of considered actions consisted of 9 handball actions of varying complexity,
from a simple “Throw” action performed by one player to complex actions, such as “Cross-
ing” that consists of several “Throw” and “Catch” actions, and actions that involve more
than one player. The varying complexity and length of actions proved challenging for
action recognition tasks, where a complex action could be misclassified as one of its parts
or vice versa.

For this reason, in future work, we plan to reduce the number of complex actions that
are directly classified and focus on shorter and simpler actions while inferring the complex
actions from the simple ones.

It would also be useful for coaches to analyze not only different actions, but also the
different execution of actions by a particular player. In this sense, we plan to combine
the localization of actions with the identities of players, so that coaches can guide their
players to better execution of actions thanks to the possibility of filtering actions by type
or player.
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